ISSUE H1

 GAHME DEVELOPHMEMNT
-'-
with PICIH-H

EY DYLAN EENNETT




SCORE: 14 20NE:DEEP SPACE
TINY FINER FRAID!

"
Wi

________________ =
ER_UP SAD_O0SF TRE'ONYOFF “CRE> FIRELOPAD NONE

CHE
GET THE NOTES I

PICO-B COAAURITY CREATIONS
(:TUITTER +# :EES)
CFREDEEOQNARSKI CRTRNTOSPIELEURG CTOHANPEITZ
CTRASENOL.OOGC  CPLATFORAALIST  CLUERRAGARES
ORYIL # eSCOTAIRE ERIERN #
eeUICKALASS2Y  CeTOASOLACROUP CLICUIDREAN


https://twitter.com/fredbednarski
https://twitter.com/rtrntospielburg
https://twitter.com/johanpeitz
https://twitter.com/trasevol_dog
https://twitter.com/platformalist
https://twitter.com/guerragames
https://www.lexaloffle.com/bbs/?uid=3054&mode=carts
https://twitter.com/scotaire
https://www.lexaloffle.com/bbs/?uid=25524&mode=carts
https://twitter.com/quickalas529
https://twitter.com/tomsolacroup
https://twitter.com/liquidream

TRELE OF CONTENTS

Introduction 4

A Word ADOUL PICO-8.......uooeeeeeieeieneeereeeeeeeeseennens 5

Using PICO-8 8

THE EILOTS ittt eeseesaeseeeseesnees 9

COOTAINAEES .ttt eeaeesreeseeseesseessens 14
Programming BaSiCS.....uuueinreererenrenrecnrrenreesrennnens 15
The GAamME LOOP ...ueieeeeceeeiiteeteeeereeeteentcvesve e 20
Tutorials 23
Cave Diver TULOTIAl . .cueeeeeeeeeieeeeneeereceeeeeeeesseeneane 24
Lunar Lander TUEOTIal..ouevveeveeeeeeeeeeeeeneeeeeveeneeanes 34
PICO-8 for Game Developers 48
MOTE ON TADLES .t 49
Particle SYSEEMS .....oueeveeeiciceceececcreeee e 52
GAME SEQLES ettt eeessrreeeeeeeaes 54
COTOULINES «auveeteeeeeeeeeeecetrecsrreeeneesssreesssresssseeessneesnns 56
Publishing Your Games 58
Publishing to the BBS.........cvivieececrcreeeereeeenes 59
Exporting for the Web ... 60
Publishing on itch.io ....coueeieieieiceececceeccee 61
References 64
Code REfEIrENCE ...ttt esaens 64
MUSIC REFEIMENCE .ttt eeeenes 68
More PICO-8 RESOUICES .....uueeeeeenereeeeecereeeeeeennnns 69
PICO-8 FONt RefErence .....ueeeeeeeeeeeeeeeeeeeeeeeeeeneenes 70



INTROODUCTION

The original reason for creating this zine was
simply to have printed materials for a PICO-8
workshop | was teaching with the Portland Indie
Game Squad (PIGSquad). While it still has that
purpose, I've decided to make it useful for anyone
who wants to pick up PICO-8 and get started. | love
making things in PICO-8, and | hope you will too.

The idea for this zine was absolutely inspired by
Arnaud De Bock's fFamous PICO-8 fanzines. Just as
they allowed me to easily get started with PICO-8, |
can only hope this zine does the same for others.

There is so much more | would have loved to add
to this issue, but | could only make it so long in the
time | had. However, that means | have plenty of
material for future issues, of which | hope there
will be many.

| had a lot of help and support while putting this
together and | appreciate all of it.

Enjoy!
Dylan (@MBoffin)

© 2017 Dylan Bennett

Contact: @MBoffin ~ mboffin.itch.io

Patreon: patreon.com/mboffin

PICO-8 logo used with permission from Lexaloffle

y


http://twitter.com/MBoffin
http://mboffin.itch.io
http://patreon.com/mboffin

A UORD AEQOUT PICO-H

| was captivated by the charm of PICO-8 from the
first moment | tried it. | have yet to meet anyone
who doesn't take a liking to PICO-8 after seeing
it in action. There's something about it that just
captures people's hearts.

It's well known that
creativity thrives within
constraints. Nowhere

is that more true than
with PICO-8. Limited
screen size, color palette,
code length, and so

on all contribute to an
environment where you
are actually free to be more creative than you
might be with other game engines.

Unity is a great example of a game engine with
very few constraints on what you can create. While
that's good, it also means you have many decisions
to make. PICO-8's constraints do away with many
of those decisions and let you focus on just
creating your game.

For example, a Unity game might have to work on
dozens of screen resolutions, but in PICO-8, you
get one resolution of 128x128. This frees you to
put more effort into making your game work well
in that one resolution.



A UORD AEQOUT PICO-H

On the other side of the
coin, PICO-8's constraints,
{3l such as code length, will

M inevitably force you to
make decisions—decisions
we such as what is really

488 inportant to keepin

I SEE 00 UENT T THE Wokkenor. | your game. Unity has no
S R e constraint on code length,
soyou're free to just keep adding as many features
as you wish. This is not necessarily a good thing
when it comes to game development.

There's another aspect to PICO-8's charm that,

for me, reaches back decades. When | was a kid,

| remember magazines that would include whole
programs written in BASIC. You just typed in the
code and ran it! Sometimes the program made a
cool picture, sometimes it would be a simple game.
By itself, this was interesting and fun, but what
really captured my curiosity and hooked me for life
was changing the code to make it do new things.

| Found something akin to this in PICO-8, and it's
rooted in the culture of the PICO-8 community.

Joseph White (aka zep), the creator of PICO-8, has
created a community around PICO-8 where sharing
what you create is not only easy, but encouraged.
When you load someone else's creation in PICO-8,
you can run it, but you can also look at the code,

b



A UORD AEQOUT PICO-H

change the sprites, do whatever you want. You
have as much access as the person who created
it! For me, this really harkens back to those BASIC
programs found in magazines.

The easiest way to share i .
your PICO-8 creations is by @19 %14 LEVEL:n

. ) nnnnnnnn
making a game cartridge,
or cart for short. These
are like digital versions of
physical game cartridges.
They're easy to make and
easy to share because
they're jUSt imageS! The CAIN THIEF ADMENTURE!
really cool partis that all of R -
your game's information is
stored in the image of the cart! All of it! The code,
art, music, everything. If someone has that cart
image, they have everything they need to run your
game in PICO-8.

As you create new things in PICO-8, | encourage
you to share what you create with others on the
Lexaloffle web site. (See page 58 on how to do
that.) Just as you can learn from what others have
created, others will be able to learn from what you
are creating.

| can't wait to see what you create!

1



When you first run PICO-8,
you start in a mode where E'::-ﬂiglﬁlhlﬁ:-:nLuFrLE CANES LLP
you can type in commands. ETTRI R

From this mode you can
type commands like SAVE,
LOAD, and RUN. You can use
the command HELP to see
what other commands you

can run from this mode.

Use the ESC key to switch back and forth between
editor mode and command mode. When you are
playing a game and hit ESC, you'll come back to
command mode. Just hit ESC again to go into
editor mode.

You'll find notes about each editor and shortcuts
relevant to each on the following pages.

The shortcuts below are possible no matter which
editor you are currently using.

Shortcuts:

 Alt-Right/Left - Next/previous editor
e Ctrl-S - Save

e Ctrl-R - Run

e Ctrl-M - Mute/Unmute

» Alt-Enter - Fullscreen

« Alt-F4, Cmd-Q - Quit

(Use Cmd instead of Ctrl on macOS.)



COOE EDITOR

Notes: o
All your code is written FUNCTION _INITC )
here. One of PICO-8's

END
limits is how much code FUNCTION _UPDATE )

you can use. This limit is -

a bit hard to understand FUNCTION _ORAUC )
for people new to PICO-8.
It's based on something
called tokens. These are
basically individual bits of code. For example,
something like #=WIOTH+1 takes up Five tokens, one
token for each part (%, =, WIDTH, +, and 1). You are
allowed 8192 tokens of code, so you'll be fine until
you're making a fairly large game. You can see the
number of tokens you've used in the bottom-right.

END

Shortcuts:

* Alt-Up/Down - Go up/down a function at a time

 Ctrl-L - Move to a specific line number

 Ctrl-Up/Down - Move to the very top/bottom

* Ctrl-Left/Right - Move left/right by one word

 Ctrl-F, Ctrl-G - Find text, or find again

 Ctrl-D - Duplicate the current line

» Tab/Shift-Tab - Indent/un-indent the currently
selected line(s)

 Ctrl-Tab/Shift-Ctrl-Tab - Move to next/previous
code tab

(Use Cmd instead of Ctrl on macOS.)

q



Notes:

Sprites are the pieces of art
that make up your game.
They might be characters,
map tiles, pickups, titles,
backgrounds, anything.

P1CO-8 allows you to have
256 8x8 sprites. These are
split across 4 tabs labeled 0-3. However, the last
two tabs are shared with the Map Editor. So if you
have a really big map, you won't be able to use the
last two tabs of sprites. But if you're using the last
two tabs of sprites, you won't be able to use the
lower half of the Map Editor.

Shortcuts:

* H/V - Flip the sprite horizontally/vertically

* R- Rotate the sprite clockwise

* Q/W or - / =- Move to the previous/next sprite

* Shift-Q/Shift-W or _/ + - Move one row of
sprites back/forward

* 1/2 - Move to the previous/next color

» Up/Down/Left/Right - Loop sprite

* Mousewheel Up/Down, < / > - Zoom in/out

» Space - Pan around while space is held down

* Right-click - Select the color under the mouse

10



Notes:

PICO-8's map tiles use
the 8x8 sprites from the
Sprite Editor. This means
16x16 tiles will fill an entire
screen.

Even though you can have
a maximum map size of 128
tiles wide and 64 tiles tall, the lower half of the
map actually shares space with the last two tabs of
the Sprite Editor. So you need to decide if you want
a large map or if you want a lot of sprites.

No matter what is drawn in sprite #0, that sprite is
used as an "eraser" sprite. You can use it to erase
map tiles.

Shortcuts:

* Mousewheel Up/Down, < / > - Zoom in/out

» Space - Pan around while space is held down

* Q/W, - / =- Move to the previous/next sprite

 Shift-Q/Shift-W, _/ + - Move one row of sprites
back/forward

* 1/2 - Move to the previous/next color

» Up/Down/Left/Right - Loop sprite

* Right-click - Select the sprite under the mouse

11



Solnb EDITOFR

Notes: B -

4 02 ¢ 5PD O3 LOOP 00 00
A PICO-8 cart can have . e
up to 64 sounds. Each
sound has 32 notes. You
can control the frequency,
instrument, volume, and
effect for each note.
You can also change the
playback speed of the
whole sound and make sections of it loop.

The Sound Editor has two modes: pitch mode and
tracker mode. Pitch mode is useful for simple
sound effects, whereas tracker mode is useful fFor
music. See page 68 for a PICO-8 music reference to
use for tracker mode.

Shortcuts:

 Space - Play/stop

e - [ +-Go to previous/next sound

e < /> - Change the speed of the current sound

* Shift-Space - Play the current group of 8 notes

» Shift-Click on an instrument, effect, or volume to
change all notes in a sound at once

e Ctrl-Up/Ctrl-Down, PgUp/PgDn - Move up/down
4 notes at a time (tracker mode only)

e Ctrl-Left/Ctrl-Right - Switch columns (tracker
mode only)

(Use Cmd instead of Ctrl on macOS.)

12



AUSIC EDITOF

Notes: PRTTERN 4 0E GE] [ GH 6 ¢

The Music Editor allows you e s
to create patterns of music [EErES € 1055 |OH3S
using the sounds from the |[CRETEINEMNCETEEITEE

NN BT S EEEE
o C 1055 AH3S

Sound Editor. Each pattern
has Four channels that can
each contain a sound from

the Sound Editor. c C ay

I-
C 25 C L 31
L 35 i L 35
C a2y C L 35
C
i

L 35
C 35

Playback of patterns is controlled by the three
buttons in the top-right (two arrows and a square).
If the right-facing arrow is on, that marks a start
point. If the left-facing arrow is on, that marks a
loop point. If the square button is on, that marks a
stop point.

Playback flows from the end of one pattern to

the beginning of the next. However, if playback
reaches the end of a pattern and finds a loop point,
it will search backward until it finds a start point
and play from there. If playback reaches the end of
a pattern and finds a stop point, playback will stop.

Shortcuts:

» Space - Play/stop
- / +- Go to previous/next pattern

Note: You can edit sounds in the Music Editor, so
most Sound Editor shortcuts also work here!

13



PICO-8's screen space is 128 pixels wide and 128
pixels tall. This may not seem like a much at First,
but you can do a lot in that amount of space!

I 128
n=40 H=40O

n+dc r S

128

4.y
[
y

3"1

2
[~

127.-121

Notice the coordinate 0.0 is in the top-left and
coordinate 1211231 is in the bottom-right. This
means positive ¥ goes to the right and positive

4 goes down. (This may be different from what
you're used to, where positive H is usually up.) Also
remember that because we start counting at @, the
position 121 is actually the 128th pixel.

14



PROLREAAALING ERSICS

Fitting a full introduction to programming in
this zine just wouldn't be worth it. | wouldn't be
able to do the job justice andstill get to all the
fun stuff PICO-8 has to offer. Not to mention,
there are already so many great introductions to
programming on the Internet.

However, there are a few specific things | would
like to ensure are covered before we get to all the
fun stuff. These are particularly important. Even if
you don't know much about programming, you'll
be able to follow along if you just understand
these fFew things. If know programming already,
you can skip all this stuff.

Variables

Variables are ways to store information with an
easy-to-remember name. As the name "variable"
implies, the information stored in the variable
can vary, or change. In PICO-8, variables can hold
numbers, text, and the value TRUE or FALSE. Here
are a few examples of variables:

n=hY
NARE="D0YLANR"
ALIME=TFRUE

Some words are reserved and you can't use them
for variable names (like the word "function").
You also can't start the name of a variable with a
number.

15



PROLREAAALING ERSICS

Functions

Functions are a list of instructions for the
computer that are all grouped together under one
name. Functions are usually created if you have a
certain set of actions you want the computer to do
many different times.

Functions are written with parentheses after the
name of the Function. This is so you can give the
function extra information in case it needs that
extra information to do its job. Even if no extra
information is needed, you still need to write the
parentheses.

Here's an example function called bRAU_TARCETL 1.
It draws a target shape using filled circles. Note
that it needs an X and a Y coordinate to do its job:

FUNRCTION DRAM-TARGETCH-Y2
CIRCFILLLY.-H-1b-B2
CIRCFILLLW-H-12.71
CIRCFILLLx.-H-B-81

EII_IIEHIIFILLII n-4-4-71

Maybe you noticed something: CIRCFILLY 1 is a
function too! It's a Function built into PICO-8, so
you don't have to write the steps yourself, but

it's still a function. You give it an X/Y coordinate,
a radius, and a color, and it draws a filled circle

at X/Y, at that radius, and with that color. And
CIRCLFILLY 2 is just one of many built-in Functions!

lb



PROLREAAALING ERSICS

Usually a Function just does the job you need it to
do and that's that, like the DRAU_TAREGETY 1 function
above, or CIRCLFILLE 3. But sometimes you need a
function to give back, or return, information when
it's done doing all of its steps.

Say you make a function that does a bunch of
math, but you want to know the result when it's
done. In other words, you want it to return the
result back to you. Easy enough. You just use
RETURN and then specify whatyou want it to return.
Here's a real example:

FUNCTION AREACMIOTH.HEIGHT
EEETUH" HIOTH % HEIGHT

IF ‘ARERACU-H)Y > 251 THEN
PRINTCYEIG!")

ENO

When that function gets run, the number returned

would be Hd. Since 0O is indeed greater than 25, the

PRINTL 3 function would then happen.

Functions are the backbone of anything you will
create in PICO-8. Most games are really just many,
many functions strung together, each one making
changes to things in the game as the players play.
Really understanding how your code moves from
one function to another is the key to being able to
make great games.

11



PROLREAAALING ERSICS

Tables

Tables are a way to store a lot of information all
together under one variable name. Most PICO-8
games will use a table at some point or another, so
it's good to understand how they work.

When you add a piece of information, or value, to
a table, it gets paired with a name or a number
called a key. The key is what you use to get the
information back out of the table. You can say,
"Look up the information stored in that table using
this key." Keys are like the index in a book.

If you add values to a table without setting the key,
the key will automatically be assigned as a number.
Let's see an example of what this looks like.

THELE
KEYH+-|MALUE
KEYH+-|WALUE
KEYH+-|MALUE
ITENS PLAYER

[1}+["SuorD" H—+#[112
[2H+["CLORE" g——[13
[3}+["E00TS" ALIVEH[TRUE
18




PROLREAAALING ERSICS

Now let's see how that looks in code. Take note
how we create the PLRYEF table using empty curly
braces. Then we add the values with named keys.
For the ITERS table, we create the table with the
values inside the curly braces, but without names.
The keys get automatically assigned as numbers.

PLRYER=1}

PLRYEFR .W=112
PLRYEFR .4="13
PLRYEF .ALIME=TRUE

ITEAS={"SUORD".- "CLOARK"."EOOTS"}

That's how to get values into a table. But what
about getting values back out? For keys that

are names, you can just use TRELE . KEY, such as
PLRYEFR.¥ or PLRYER.ALINE. But for keys that are
numbers, you use square brackets with the number
of the key inside, such asITERSL11 or ITEASL3].

If your table uses numbers for keys, you can find
out how many values are stored in a table by

using the number sign (#), such as HITERS. In our
example, this would give you 3. This is useful if you
have to loop through all the values in a table and
do something with each value. Here's an example:

FOR _I=1.HITERS OO
EEEIHT(ITEHE[I])

This starts I at1 and counts to HITERS (which is 3).
Each time, it will print the value at ITERSL I 1. Since
I goes from1l to 3, every item will be printed.

19



THE LGARE LOOP

PICO-8 uses three specially-named functions to
create what's called a game loop. The _INITL 2
function happens one time, then _UPOATEL ¥ and
-ORAUL 1 happen in a loop until your game ends.
Here's the basic structure of the PICO-8 game loop
and what each functions does:

~INITC )
~UPOATEC 1

—ORAUC 1

You could put all of your code inside these three
functions, but it's generally not considered a good
idea. A better solution is usually to make other




THE GCARE LOOP

functions that do specific things, and then have
~INITC 2, _UPDATEC 3, or _ORAMY 1 run those functions.

For example, instead of putting player movement
code in _UPDATEL 1, write your own function called
AOYE_PLRYERTL 2 and run thatinside _UPOATEL 1.
Here's an example of how it would all look:

FUnCTIOn _INITC 2
ARKE_PLAYERC 1
EnO

FUNCTION _UPDATEC }
EHEUE-FLHHEH(J

FUNCTION _DRAMC )
CLSC 3 --CLEAR SCREEN
EHEHH-FLHHEH(J

FUNCTION ARKE-PLAYERC 2
Ph=bY4

PY=hYy
PSPRITE=1
EN

FUNCTION AOUE_PLAYERC )
IF CETNCOY) Pe-=1 --LEFT
IF CETNC1la) PH+=1 --RIGHT
IF CEThig1) PY-=1 --UP

EﬁE CETNCI 2y PY+=1 --O0OUN

FUNCTION ORAWU_PLAYERC 2
EﬁEHiFEFHITE;FH;FHJ

See how the game loop functions are kept nice and
tidy? Now you can see a good overview of how the
game works just from those three functions.

el



|

Lo
i,
A

[ =

I FEEL LIKE I'A AISSING
SONETHING. ..

wif]
~n

H ..
g BB RS R B Ry R R R R R R

[
plemeP B R rme ey sBelelels sl

T T T = T I I

T
TN
[l el
R A AT A% AT A A% A A A A A

TINE:02.32 EEST:HD.22

wm =

Eu*::'

) score:oooloo
i [J EJ [

“1-_‘_ - L] "'. v
»® 1 ‘i; -y
gt ||
u | ]
L i
. Ul
.D " & E
¥ u
" - ol
e
L . '
| ]

ICK
| L]

-.
"
Mk

b
g !

150 38 Li:1

vl = =7



https://twitter.com/johanpeitz
https://www.lexaloffle.com/bbs/?uid=10844&mode=carts
https://www.lexaloffle.com/bbs/?uid=10873&mode=carts
https://twitter.com/quickalas529
https://twitter.com/morningtoast
https://twitter.com/guerragames
https://www.lexaloffle.com/bbs/?uid=18260&mode=carts
https://twitter.com/neko250
https://twitter.com/matthughson
https://twitter.com/liquidream
https://twitter.com/taeckerwyss
https://www.lexaloffle.com/bbs/?uid=13845&mode=carts

TUTORIALS

When doing these tutorials, go ahead and change
things ! Don't want a gray cave? Make it green!
Gravity is too light? Make it stronger! PICO-8 is a
great environment for playing and tinkering, and
these tutorials are no exception.

When writing the code, you'll often add on to
what you've already written. Code you've already
written will be and new code will black.

THIS IS NEW COOE!

It's important to save your work as you go. But just
as importantly, you need to know how to load your
game later.

Use the SAYE command along with the name of
your game to save your game. (Don't use spaces

in the name, though!) PICO-8 will add .PB to the
end of the filename so that your computer knows
it's a PICO-8 game. You can use the LORD command
to load your game later. At any time after you've
saved or loaded your game, you can hit CTRL-S
(CMD-S on macOS) to save any changes.

F 11E F 11E

LC3 2014-17 LEXALOFFLE CAAES LLPEE C3 2014-17 LEWALOFFLE GARES LLP
YPE HELP FOR HELP YPE HELP FOR HELP

> SANE GARERARE > LOAD GARENRARE

SAVED CAAEMAAE. PE LOADED GCARERAAE.PE 0 CHARS)




CAVE DIWEFR = STEP 1

The first game we’ll make is a classic, one-button,
side-scrolling game. There have been hundreds
of games like this, the most recent hit being
Flappy Bird. In our variation, we're flying/bouncing
through a cave trying to get as deep into the cave
as we can. It's a fun, easy game!

NOTE: Start a new game by rebooting PICO-8 with
the REEOAT command. (Hit ESC if you aren't already
in command line mode.) Then be sure to save your
game with the instructions on the previous page!

We only need to create three sprites in the Sprite
Editor for this whole game. Sprite #1 for jumping,
#2 for falling, and #3 for when you hit the walls.

You don't
have to copy
these! You can
make your
own!




CAVE DIWEFR = STEP 1

-

=
==
-

mm=-—-
11
L1
e
am

[ L ] |
mil-=
=
b= ] |

TC
L5E
L

m

CTION _MPDATEC 3

-
" =l

oh _ORAWL 3
-PLRYERY }

™

M
=l =Tal— =T — 1 |a]—
===

oaras oo o3odaoao

m

AKE-PLRYEFRL 1
-=POSITION

-=-FALL SPEED
-=-5PRITES

=
=
=
1

1111 L=

-=-FLY SPEED

-y r—
rrrrrrrrrrr—=
pm e e e e e e e e e e Py
ICICILCLCLCICLCLELE —
mmmmmmmmme-
e e e s e e e e e Lo
R =g b = e
Smaar-aniiomn

n
}
.0o4
.RI
A
E
P
C

m

]

=
=meormaoaxc
meuniin

FUNCTION DRAWU_PLAYERC 1

IF (CARE_OMER I THEN
SPRLPLAYER . DEAD. PLAYER . - PLAYER .4}
ELSEIF CPLRYEFR.DOY<0) THEN
SPRCPLAYER.RISE. PLAYER . V- PLAYER .Y}

ELSE
EﬁEH(FLHHEH.FHLL;FLHHEH.H;FLHHEH.HJ

END
SAVE & RUN IT!

Okay, so it's not mind-blowing yet. But it should at
least work and show you the player on the screen.



CAVE DIWEFR =~ STEP C

Let's make that player jump with the UP button!
PICO-8 uses numbers 0 through 5 to represent
each button the player can press. Here is how each
number connects up to each button:

O C
O Oy Cex 0 1 45
LT 3

Remember, code in gray is code you've already
written. Just add the code in black!

orl
FUnNCTIOn _UPOATEC 3
AOWUE_PLAYERC 1

EnD

ol
FUNRCTIONn AOME_PLAYERC 1
LRAUITY=0.2 --EILLER REANS MORE CRAWITY!
PLRYEF .DY+=LCRAWITY --AOO CRAMITH
-=TUAP

IF CETNPL23) THEN

PLRAYEF .O4Y-=5

EnD

==A0WE TO NEW POSITION
EEhHHEH.H+=FLHHEH.DH

SAVE & RUN IT!

Bouncy! The secret to this game is that the player
never moves forward, just up and down!

ch



CAVE DIWEFR ~ STEP 3

Let's modify our game loop functions to get ready
to add the cave. Then we'll add the cave functions.

FUnCTIOn _INITL )
LARE_OUER=FALSE
AAKE_CAWEYL 3
ARKE_PLAYERC 1

EnO

FUNCTION _UPDATEC 3
UPGATE CRUEL
(N

AOWVE_PLAYER
EnO
FUNCTION -DRAWC )
LLSE 1

ODRAU_CAYEYL 3
ORAU_-PLAYERC 1
EnO

The cave is really just a list from left to right of
how low to draw the ceiling and how high to draw
the floor for each column of the cave. The faster
we add columns to the end and remove columns
from the beginning, the faster the cave flows by!

F' h

Remove old Make new
columns here! columns here!

- J




CAVE DIWEFR ~ STEP 3

When adding new columns, we look at the last

column's Floor and ceiling heights. Then we go up

or down randomly from there, but only just a little

bit, so it looks like a natural change.

=+ o=
oS -WUnie
LILES fpa
10C Lad BC L)
Lad B3 1 Ll
= EJIE
(== TU ] - L
[= == - TS
O b= O Ll
= b =
Ll =l E
==
==L o ]
HEI .
=Ll BC Ll
U Sao

SEEDEa SO0 kel LIS
=== =1 H

Lo

Lud

L

Lud

e e 2

et il L

=

= P llc
= Ol s
H

SR

LMl Lo sl
= r- LML~
[ = =t o] < g L |
Dl L. ad%
= L 1
LIEEJINI LD -~
[ ] IR
oIxuUOoOannEDr
| =L L= ol " =
] e e = B
AL - o
[ [ L L ) D P ) |
E-HTDTTDOa
| Ed AR

1 A

=

=

Ll 5
Lad

[ =
L]
[ |
n oD
| ==
L—T T |
- I
= ] o
' OLEa
- (=
LS =K
LYy | -
LT O0d
x= oo
=L =
p—J =l
Ea Mg
=T Ll
= e =
=kl LI
Lo LY -]
i D .
LD el
FAdXT =1
L O
LN I | | "
11 1 L=
= =+ -l
EunmnmeEae-
<= I | LS Y
SR I -l
L=—"1—"TCR I |
= e = =l =
(=== | L]
= LY e L Ll
=100 SO
LDALAELCHHO
[ = O P e o |
= =0 L Ll
L Ll

SAVE & RUN IT!



CAVE DIWEFR = STEP H

You probably noticed you can run into the sides of
the cave and nothing happens. Let's fix that!

Also, certain things should stop happening if we
hit the sides of the cave. For example, the cave
and the player should stop moving. We'll use the
variable CARE_DMER for that.

FUNCTIOn _UPOATECL 2
IF (nOdT GARE-OMER I THEN
UPOATE-CAMEC 1
AOWUE_PLAYERC 1
CHECK_HITL )
ENO
ENO

E
EN
SAVE & RUN IT!

Everything should stop if you hit the sides of the
cave! You'll notice that we now get to see Sprite #3
when the game is over.

We almost have a complete game! We're so close!
All we have left is to add a score (so we can see
how far we've traveled), some sounds, and a way to
restart the game if we crash into the cave.

eq



CAVE DIWEFR =~ STEP 5

Our player already has a score, so let's add to it
as the player moves. We'll show the score in the
corner as they play. Then when the game’s over,
we'll tell them and show the player their score.

FUNCTION -DRAWC )

CLSC ]

ODRAU_CAMEY I

OFRAU_PLRYERY 2

IF (CARE_OUER) THE

PRINTC"GARE OMER!".Y4Y.4Y.72

EEEEHT("HBUH SCORE:". .PLAYER.SCORE.-34.-54.1)
EEEIHT("EEEHE " .PLRYER.SCORE.-2.2.711
ENO

FURCTIONn AOWE_PLAYERC 3
--A00 GRAMITYH
PLAYEFR.DOY+=0.2

-=TUAP

IF CETNPC22) THEN
PLRYEFR.OY-=5

EnD

-=A0ME TO NEW POSITION
PLAYEFR . Y+=PLAYEF . DY

==UPOATE SCORE
PLRYEFR . SCORE+=PLAYER . SPEED

END
SAVE & RUN IT!

a0



CAVE DIWEF =~ STEP b

Now let’s add sound! Sound #0 will be the jump
sound and sound #1 will be the game over sound.

A1 =] L =]
4 00+ SPO 04 LOdP 00 'O0 401 F SPO 10 LOOP 00 OO0
-~ [ I <. | [ I

FURCTION AOWUE_PLAYERC 3
--A00 GRAMITYH
PLAYEFR.DOY+=0.2

-=TUAP

IF CETNPL221 THEN
PLAYEFR.DOY-=5
SFacd)

ENO

==A0ME TO NEW POSITION
PLAYEFR . Y+=PLAYEF . DY

==JPOATE SCORE
EFhHHEH.5EﬂHE+=FLHHEH.5FEED
|

FUnNCTIONn CHECK_HITE 1
FOR I=PLAYER.V.PLAYER."+7 OO0
IF (CRAUELI+1].TOP=PLRYEF.H
OF CAVELI+1].ETA<PLAYER.Y+71 THEN
LARE_OWER=TRUE
SFHLl)
ENO

END
END SAVE & RUN IT!

Chl



CAVE DIWEFR = STEP 1

Our very last step is easy. When the player loses,
we need to wait For a button to be pressed to
restart the game. But we also need to tell the
player which button that is!

(Hint: hit shift-x to make the & character.)

FUnNCTIOn _UPOATECL 1
IF (nOdT GARE_OMER Y THEN

UPORTE_CRAYEL 1
AOUE_PLAYERL 1
CHECK_HITL )
ELSE
IF CETNPCSIY _INITC ) --RESTAHRT
ENDO
EnD
FUNCTION _DFAUC
CLSC ]
OGRAU_CRYEL

ODRAU_PLAYERC 1

IF (CARE_OMER Y THEN

PRINTC"GCAAE OMER!™.YY.Y4Y.721

PRINTC"YOUR SCORE:". .PLAYER.SCORE. 34.-5Y4. 71
EE INTCY"PRESS € TO PLAY AGAIN!™.1B8-712-b1

F

R
SE
EIHT("EEGHE="..FLHHEH.EEGHE;E;E;13

SAVE & RUN IT!

You did it! You made a game! Now get your friends
to play and see who can get the highest score!

ic



CAYE DIWEFR =~ ETC

We have a complete game at this point, but
there’s a lot we could continue adding from here.
Maybe things to pick SCORE : 124

up along the way that
make you go faster or
slower? Maybe extra
lives? Maybe enemies to
avoid? The list is endless.

However, try not to get
stuck in adding every
feature you want before
letting others play it. Let
people play it early and often! Get feedback from
players on what they like and don’t like. Really
listen to what they have to say. What might sound
fun in your head might not be as fun once it's in
the game.

At this point, if you want your friends and family
to play, they need to come to your computer to
play. That's fine, but not always workable. On page
58 you'll Find a section with easy instructions for
posting your game on the web where others can

play it.

Are you ready to make your next game? Let's go!

33



LANODEFR =~ STEP 1

The second game we'll make is a bit more complex
than the first game, but still a lot of Fun. In this
game you're guiding a lander onto a landing pad.

Just like the First tutorial, use the REEOAT command
to start a new game.

Let's add code to draw the lander. You can make
your lander look however you want. Just make
sure to put it in Sprite #1. (The second sprite spot.)

FUnCTIOn _INITC )
ARKE_PLAYERC 1
EnO

FUNCTION _UPDATEC }
EnO

FUNCTION -DRAMC

CLSE )
IFAU_PLRAYERL ) H A

Fg[IEIIIJI'I ARKE_PLAYERC 1 SPRITE #1

.E==ﬂ -=POSITION
LOn=0 -=-AOMERENT
.04=0

.SPRITE=1

.ALIUE=TRUE

. THRUST=0.015

EnO

FUNCTION ODRAWU_-PLAYERC )
SPRLP.SPRITE-P.n-P. Y2

END
SAVE & RUN IT!

a4

M|



LANODEFR = STEP 2

As you can see, that just showed the lander. So
let's add some gravity and make our lander fall!

We need a function to move the player. We move
the player by adding the player's movement (P. b
and P.0Y4) to the player's position (P.% and P.4).

Then to add gravity to our game, we just make sure
we're always adding a gravity amount (i) to the
player's up/down movement (P.DO4).

Remember, gray code is code you already wrote!

FUNCTION _INITC X
L=0.025 --LRAWITY
AAKE-PLRAYERC }

ENnD

FUNCTIONn _UPDATEC J
EFEUE-FLHHEH()
|

FUNRCTION AOME_PLAYERYL )
P.0Y+=C --AOD GRAMITH

P.n+=P .0 --ACTUALLY AOWE
P.4+=P.0Y --THE PLRYER

END
SAVE & RUN IT!

The lander falls now! Because ROVE_PLRYERY 2
happens every time the game updates (30 times
a second), gravity will always be added to the
player's movement. However, the player still has
no control over the lander, so let's add that.

35



LANODEFR = STEP 3

When the player thrusts, we want it to play an

engine sound. Use the Sound Editor to make that
in Sound #0. Make sure to use the second to last
instrument! (It's the most engine-thrusty sound.)

|||I .:]
4 00 F SPO Ob LOOR OO0 foo
7 T L L e e

Things to note:

* Speed is at Ok
« Use this sound:

* You only need one
dot of sound! (And
the lower the note
used, the more
engine-thrusty it

will sound.)
THRUSTL )
FUNCTION THRUSTC )
-=A00 THRUST TO AOMERENRT
IF CETHCOXY P.OR-=P.THRUST
IF CETHC12) P.OR+=P.THRUST
IF CETHC22) P.OY-=P.THRUST
==THRUST sOUnO
EﬁE CETNCOY OR ETOC1) OF ETNC23) SFRCO)

SAVE & RUN IT!

db



LANODEFR = STEP Y

We can fly our lander now, but you'll notice we can
go zooming off the edge of the screen! We need

a function to stay on the screen. This will check
the new position to see if it's off the edge of the
screen. If so, it will reset them back to the edge
and cut their movement in that direction to zero.

We check if P. % is more than 118 becauseP.% is on
the left side of the sprite. IFP. % was more then 111,
it would draw past the right edge of the screen,
and that's what we're trying to prevent!

FUNCTION AOWE_PLRYERC 3
P.0OY+=L --AOO GCRAWITYH

THRUSTC 3

P.u+=P.0¢ --ACTUALLY AOUE
P.4+=P.0Y --THE PLRAYEF

STRY-ON-SCREENC 2
EnD

FUNCTION STRY_ON-SCREENC 2
IF CP.a<0) THER  --LEFT SIODE

=m
=T
[ ==
-
1ne
=

[P.#H>1193 THEN --RIGHT SIODE
=111
LOv=0

]
P.4<0) THER  --TOF SIODE

SAVE & RUN IT!

31

=m
EE'U'U"'I:"U'U"‘I:"U'U
[ = L
c
1ne
=

m
—d |



LANODEFR = STEP 5

We have a functioning lander! Let's make the rest
of the environment. We need stars, a landing pad,
and the ground, and we want them to be random.
But let's just start with stars.

PICO-8's random number generator, RhbiL 1, will
give you a random number between 0 and the
number you give it. But we need a Function that
gives us a random number between any number
we choose (not just 0) and any other number. We'll
make our own "random between" function called
RNOEL 3 that takes a LW and HIGH number and gives
us a random number between them.

We're also using a function called srand() that
ensures we get the same random numbers each
time we draw the stars, so they don't jump around.

FURCTION _DOFAUC )
LS 0
OFRAU_STARSY 1
OFAU_PLAYEFRY 1

ENO

FUNCTION RNDECLOM.HIGH?
EEETUHH FLRCRNOCHIGH-LOW+1 3+L0OW 2

FUNCTION DRAU-STARSC )

SRANOCL 3

FOR _I=1.50 O0
PSETCRNOECO.- 127 3-RNODECD.- 127 RNODECS.-T0)

EnO
SRANOC TIAEC 2
EnO

SAVE & RUN IT!

]



LANODEFR =~ STEP b

Adding ground is probably the most complex part
of the game, believe it or not. We're going to write
our code in a few different steps, and then we'll
run it.

We're going to add two new functions. The first
for making the ground and the second for drawing
it while we play. Making the ground happens at
the beginning, so running that function happens
in -INITL 1. Drawing the ground would of course
happen in _ORAWL 1. Let's just add the lines where
we run those functions First.

FUHITIﬂﬂ =INITC
=0.025

HHPE PLAYERC 1

ARKE-CROUNDOC 2

ENO

FURCTION _DOFAUC )
|
OFAU_STARSL X
ORAU_CROUNOYE 3
OFAU_PLAYEFRY 1

ENO

The function to create the ground requires some
explanation of what's going on.

We're going to store the ground as a list of ground
heights. There are 128 pixels across the screen,

so we'll store 128 ground heights. When we draw
our ground, we just go through that whole list,
beginning to end, and draw a line from that ground
height down to the bottom of the screen.

39



LANODEFR =~ STEP b

First we'll Figure out the position of the landing
pad and make that into flat ground (all the same
ground height). Then we'll add bumpy ground to
the left and right of the landing pad.

FURCTION ARKE-GROUNDOC )
==CREATE THE GROUND

Lho=1}

LOCAL TOP=9h --HILHEST POINT
LOCAL ETA=120 --LOMEST POINT

==5ET UP THE LANDING PAO
PRO=1}

PAD.UIOTH=15

PRD . W=RNOECD.- 126-PAD.UIOTH
PRO.Y=RNOECTOP-ETA )
PAD.SPRITE=2

-=CREATE CROUNOD AT PRO
FOR I=PAO.w.-PAO.W+PRAO.UIOTH DO
EEHD[I]=FHD.H

==CREATE GROUND RIGHT OF PAD

FOR _I=PAD.w+PAO.UIOTH+1.-127 OO0

LOCAL H=RNODECGNOCI-11-3-GNOCI-11+3)
EﬁHD[I]=HIDiTDF;H;BTHJ

-=-CREATE GROUNOD LEFT OF PAD

FOR _I=PADO.x-1-0.-1 OO0
LOCAL H=RNODECGNOCI+11-3-GNOCI+111+3)
LNOCII=AIDCTOP-H-ETAD

EnO

EnO

FUNRCTION DRAU_GROUNDOC )

FOR I=0.121 Od
LINECI-CNOLI-I-127.5)

END
SAVE & RUN IT!

END
all



LANODER =~ STEP 71

Ignoring the fFact that you can still Fly through the
ground, you'll notice our landing area is kind of
boring. Let's make it awesome!

The landing pad will take up two sprites side by
side. Use the second slider in the middle to make
your drawing space 2x2 sprites. Make sure to draw
the pad flat across the top of the drawing space.
Don't forget to make it awesome!

SPRCPALD.SPRITE.-PAD.%.-PAO.Y.2.11

SAVE & RUN IT!

4l



LANODEFR - STEP H

It's important to keep track of whether or not our
game is over. For example, if the game is over, we
shouldn't be able to move the player.

But just keeping track of whether the game is over
isn't enough. When the game is over, we also need
to know whether the player won or lost.

We just need to track TRUE or FALSE for these two
pieces of information. And when the game starts,
the game is not over and the player hasn't won, so
these two things start out as FALSE.

FUNCTION II'IITI'I

HIN=FAL

L=0.025

ARKE_PLAYERC 1
ARKE_GROUNDC 3

END

FUNCTION _UPOATEC J

IF ¢noT GARE-OWER I THEN
AOWE_PLAYERC 1

EnO

END

Now we need to check to see if the player

has landed on the ground or not. This is a bit
complicated because there a few ways the player
can land. They can:

* land Fully on the pad, but not going too fast
» land Fully on the pad, but going too fast
* land partially or fully on the ground, not the pad

Only the First one means the player wins. We need

He



LANODEFR - STEP H

a function that will check each of these, one by
one. Whether they win or lose, we're going put the
changing of CARE_OWER and Udh in its own function.
It's always a good idea to put things you need to
do again and again into their own function.

FUNCTION _UPOATEC )

IF (nO0T GARE_OMER I THEN
AOWE_PLAYERC 1
CHECH_LANDOC 2

EnD
EnD
FUNRCTION CHECK-LANDOL )
L_n=FLRLP.n)  --LEFT SIOE OF SHIP
R-n=FLRLP.xn+7) --RIGHT SIOE OF SHIP
E_Y4=FLRC(P.Y+72 --EOTTOR OF SHIP
OMER_PAOD=L_n>=PA0.# AND R_-W<=PRAD."+PADO.UIOTH
Oh_PAO=E_Y>=PA0O.Y-1
SLOU=P.D0OY<1
IF COWER_PRO ANOD ON-PAD AND SLOMDY THEN
EnO_GANEL TRUE 2
ELSEIF C(OMER_PAD AND Oh-PAODI THEN
EnO_-GARECFALSE X
ELSE
FOR I=L_W.R_n OO
EﬁE CGNOCIJ<=E-Y4) ENOD-GARECFALSE}
ENnO
EnO

FUNRCTION END_GCARECHON )
LANE_OYER=TRUE

UIn=Uon
SAVE & RUN IT!

EnDO
You'll notice when we land, the game just... stops.
Let's make the end a bit more dramatic than that.

43



LANODEFR - STEP 9§

We'll make the end of our game dramatic in two
steps. First we'll add sound, then we'll add visuals.

We need two sounds: one for winning and one for
losing. We'll use our end_game() function to play
these sounds.

In addition to the notes used, pay close attention
to the speed setting, the instrument used, and
volume levels.

Ll .:] Ll .:]
401 F 5PO 12 LOOP 00 fO0 402 F 5SPOO4 LOOP 00 '00
-~ [ Y I R R 1 [

SAVE & RUN IT!

4y



LANDEFR = STEFP 10

Now let's add the visuals. If the player lands
successfully, we'll raise a flag of victory. But if the
player lands on the treacherous terrain or hits the
pad too hard, we'll show a fiery explosion.

We need to add sprites #4 and #5 for this.

We'll use the DRAU_PLRYEFL 2 Function. We'll only
draw the sprites if GRRE-OMER is TRUE, but we'll
show different sprites whether UInh is TRUE or not.

SPRITE #4 SPRITE #5

FUNCTION DRAU_PLAYERC )

SPRCP.SPRITE.P.H.-P. Y1)

IF CCARE-OMER AND WIN) THEN
SPRCY-P.w-P.Y4-B3 -=FLAL
ELSEIF CCARE-OWEFR I THEN
SPRCS-P.W-P. Y2 --ExPLOSION

EnO
END

SAVE & RUN IT!

45



LANDEFR = STEP 11

We're almost done! One last step! We just need to
let the player know when the game is over and give
them a way to restart the game.

In _UPDATEL 1, we'll check to see if the game is
over, and if it is, we'll listen For a button press. If
the button is pressed, we'll run _INITL ¥ which will
restart everything.

In _ORAWY 1, if the game is over, we'll tell the player
whether they won or not and how to play again.
(Use shift-X for the & symbol.)

FUNCTION _UPOATEC )

IF (nO0T GARE_OMER I THEN
AOWE_PLAYERC 1
CHECK-LANDC 2

ELSE

IF CETNPCS 2D _INITC D
EnD
EnD

FUNCTION -DRAUC 3

CLSC O

ODRAU_STARSL )

ODRAU_GCROUNDOC )

ODRAU_-PLAYERC 2

IF CCANE_OMER) THEN
IF CUINI THEN
EEEEHT("HGU HIn!"-4H-4B.111
EEIHT("TGG EAD!".-YH.-4B.81

E
EEEIHT("FHESS & TO0 PLAY AGCAIN".20.70.-51

END
SAVE & RUN IT!

Yb



LANOEFR =~ ETC

We're done! Even though we have a working game,
there's so much more we could add. For instance,
we could add wind, or obstacles, or a smaller pad,
or fuel that runs out. But, we'll stop here.

As with the First game,
we can publish it at
this point. The section
starting on page 58 has
easy instructions on
publishing your game.

As noted at the
beginning of this
tutorial, this game was
a bit more complex
than the first one. However, the basic approach
to creating the game is the same. We just build it
up one piece at a time, testing each time we add
something new.

47



PICO-H FOFR LGAREDEMS

While PICO-8 is certainly a fun environment for
new game developers who are first learning to
make games, it's just as fun for experienced game
developers who already know how to make games.

Because of PICO-8's

0 - 5 constraints, you are free
to quickly try stuff out
and just have fun, but
without the heavier time
investment required

of other game-making
environments. However,
experienced game
developers might not know how to get PICO-8

to do some of the more advanced things they're
used to doing in other environments (like particle
systems). To help with that, the following few
pages cover some more advanced topics that are
likely Familiar to experienced game developers.

SINCIY

L eI

COS(TY
1l -

Even if you are not already an experienced game
developer, | urge you to work your way through
these next pages. You may need to read through
it a few times and play around with the examples
until you really understand them, but it will be
worth it.

2l



NORE Oh TRELES

One reason tables are so ENEMIES
useful in games is the ability

For a table to store other |1+ ENENY

tables as values. Most games

use this quite a lot. For = |2—+|ENENY
example, each enemyin a

game might be stored as a -+ |3+ |ENERY

table, but a master enemies table would store each
of those individual enemy tables as values.

Tables of tables don't have to be as exciting as a
list of enemies. They can also be as simple as, say,
the terrain we created in the Lander tutorial, or the
cave walls in the Cave Diver tutorial. If you have to
keep track of a collection of things in your game, a
table of tables is probably your best bet.

There are many ways to deal with a table of tables.
We'll examine a common (and easy) method here.

Let's take the example of keeping track of enemies
in a game. As mentioned above, each enemy on its
own will be a table, but each enemy table will be
stored as a value in a master table called ERERIES.

There are really two parts to dealing with a table
of tables. First we need a few generic functions to
deal with each individual table value in the master
table. Then we'll need to loop through the master
table in ~UPDATEL ¥ and _ORAWC ¥ and run those
generic functions on each individual table value.

yq



NORE Oh TRELES

In our example, the master ERERIES table will be
created in _INITE 1. Then we will need to create
NMAKE_ENERYL 3, AOME_ENERYL 3, and DRAM_ENEMAYY 1.
Lastly, we'll loop through the ERERIES table in both
-UPDATECL ¥ and _ORAUL 1. Let's get started.
FUNCTION _INITC 2

ENEAIES=1}

ENO

The function NAKE-ENERYL 1 needs to accept an

/M coordinate so we can specify where to create
the enemy. The enemy tableE is created as a local
(temporary) variable because we don't need each
enemy as its own variable after we add it to the
ENENIES table. For AOME-ERERYC 3, we'll move them
randomly. If they move off-screen, we'll have them
"die" by removing them from the ENERIES table.
FUHETIﬂE_EgHE_EnEHHinHl

m

FUNRCTION DRAU_ENEAYCE )
EEEHII E.SPRITE-E.n-E.Y2



NORE Oh TRELES

With those functions written, we need to add code
to loop through the ENERIES table. There are a few
methods. As an example, here are three ways of
looping through ENERIES to draw each enemy:

-=AETHOO 1

FOREACHCERERIES. ORAU_ENRERY 2

-=-AETHOO 2

FOR I=1.HENERIES_OQ Thesears

ORAM_ENEAYCENEAIESLIN J P

END code, not part of
the code for this

--AETHOO 3 example!

FOE E IN ALLCERERIESI OO0
ORAU_ENEAYCE )

ENO

Let's use method 1 in both _UPOATEY 1 and _ORAWT 1.

FUNCTION _UPODATEY )
EEEHEHEH(EﬁEHIES;UFDHTE_EHEHHl

FEEEIEGH -ORAUY 3
EEEHEHEH(EﬁEHIES;DHHH_EHEHHl

Lastly, if we want to create, say, 20 enemies in
random locations at the start of the game, we'll
just add that to the _IRITL 1 function.

FUNCTION _INITC )

ENEAIES={}

FOR I=1.20 D0
EHEHE-EHEHH(HnﬂilEHJaHnDilEHJJ

END

And that's it! This can be used for keeping track of
all sorts of things in your game. Try it out!

81



PARTICLE SHSTERS

Particle systems are extremely useful in games.
They can be used for so many things: sparks, rain,
smoke, trails, debris, fireworks, you name it.

Particle systems are not hard to create. At their
core, they're just another table of tables. Also,
each particle usually has a lifetime and dies on its
own when its lifetime is over. The key to a good
particle system is having enough variables to give
you good control over each particle.

Let's create a particle fountain with enough
variables to give us good control over it. We'll use
many concepts from the section above on tables.
Feel free to examine each part to determine what
it does and tweak variables to see what they do.
You can also press & to create a burst of particles.

FUEETIDH ~INITC )

P5=1} -=-EAPTY PARTICLE TRELE

L=0.1 -=PARTICLE LRAWITY

ARG-WEL=2 --AAd INITIAL PARTICLE WELOCITYH
AIN_-TINE=E2 ~--AINSAR: TIAE EETHEEN PARTICLES
ARL-TINE=5S

AIN-LIFE=H90 --PARTICLE LIFETINE

ARL-LIFE=120

T=0 ==TICHER
COoL5={1.1.1.-13.-13.12-12-1} --COLORS

EURST=50

EHEHT-F=HHDB(HIH_TIHEaHHH_TIHEJ

FUNCTION RNDECLOM.HIGH?
EEETUHH FLRCRNOCHIGH-LOW+1 3+L0OW 2



PARTICLE SHSTERS

FUNCTION _URGATEL )
+=

IF (T==NEXT_P1 THER

ADD_PC bY. bH )

NEXTP=RALEL NIN-TINE. NAX_TINE )
END

—-EURST

IF CETNPCGER)Y THEN

(FOR I=1.EURST U0 ADD-PLkY.G4) END
FOREACH. P5. UPDATE_P )
END

FUNRCTION -DRAUC )
CLSC ]
FOREACHL PS.- DRAU-P )

EnO

Pir-YH2

b ol =

HEL )-AAV_MELY2
MEL 1%-1
RNODECAIN-LIFE.-ARY-LIFE2

b-
|
A
A
R
IFE-START

roaJaa

-
-
T=
F

m
mmmuaneeil i
L e 1 o 1= |

-
HS —SXdTmTmTmTmTar

m
'ﬂ'ﬂ'ﬂH'ﬂl‘ﬂ'ﬂ: =1 — LRI

TION UPDATE-PLP

LP.LIFE<=0) THEN

EiFEaFJ ==KILL OLD PRARTICLES
.OY+=L  --AO0 GRAWITYH
CCP.Y+P 021273 P.OY%=-0.H
.a+=P.0n --UPDATE POSITION
LH+=P,
.LIFE

o4
FE-=1 --DIE R LITTLE

FUNCTION DRAU_PCP )
LOCAL PCOL=FLRCP.LIFEYP.LIFE_STARTZHCOLS+11
PSETCP. WP Y- COLSLPCAL ]

END
53



Games often have multiple modes, or states. For
example, a single game might have a menu state,
a gameplay state (where you actually play the
game), and a game over state. These states often
use very different code from each other. With
PICO-8's game loop, it's easy to separate the code
for your game's various states.

The root of how you do this lies in the ability for
Function names to act like variables. Basically,
the value being stored in a function's name is the
function's code. Just like the value stored in a
variable ¥ might be a number, the value stored in,
say, PSET is the code to draw pixels on the screen.

Since PICO-8 will always run the game loop
functions -MPOATEL 3 and —ORAWL 1, you can just
assign the code from other functions to the game
loop function names -UPOATE and -ORAW.

Lastly, it helps to put each game state in its own
code tab. This makes it easier to mentally separate
the functions for each state. For example, you
could put menu code in tab I, gameplay code in
tab1, game over code in tab 2, and various utility
functionsin tab 3.

Let's look at an example of how this would work.

Notice that each state is on a different tab. Also

notice the way we move from one state to another

if the player hits &. (Use shift-O for the & symbol.)
|



FurlrE_iq
FURCTION _IRITC D AERU-IRITC 3 ERD

FURCTION AENU-INITY 3
-UPODATE=AERU_UPOATE
EﬁHHHH=HEnU_DHHH

FUNCTIONn AENU_UPOATEL )
EﬁE CETNPCER Y GARE-INITC Y --PLAY THE GAAE

FUnCTIONn AENU_DRAWY )
EEEIHT("HE"U!"J -=-AENU OFAU CODE

grife

FUNCTION GAAE_INITY )
-UPODATE=LARE_UPOATE
EﬁHHHH=EHHE_DHHH

FUNCTION GCARE_UPOATECL )
EﬁE CETNPCER ) GAREOUER-INITC ) --LAAE OUWER

FUNCTION GAAE_DRAWY )
PRINT C"GAAE!" ) --GAAE DFRAU CODE

orifd

FUNCTION GAAREQWER-INIT
-UPODATE=LANEOWER_UPDA
EﬁHHHU=EHHEﬂUEH_DHHU

L1
TE

FUNCTION GAREOWEFR_UPODATEY )
EﬁE CETHPCCR Y AENRU-INITC 2 --EACK TO AENWU

FUNRCTION GAAEOQWER_ORAUC )
EEEIHT("EHHE OUER!" Y --LARE OWER COODE



COROUTINES

Most functions in your games need to happen

all at once inside the time it takes to draw one
frame (like moving the player). But sometimes you
need a single function to take longer than a single
frame. Or you might want other things to be able
to happen while the Function is running its course.
This is where coroutines help.

Coroutines are special functions that can give back,
or yield, control to what's calling them even if the
coroutine isn't complete. The coroutine can then
be resumed at a later point.

This is very useful for, say, scripted animation or
showing dialog one letter at a time, all the while
still listening for key presses from the player. In
both examples, you would want the function to
play out over time, not happen all at once.

PICO-8 has four functions to work with coroutines:

COCREATECFUNCTIAN_NANE ) - Creates and returns a
coroutine, but does not start the coroutine.

CORESUREL CORMUTINE ) - Passes control to the
coroutine. (If it hasn't started yet, this will start it.)

COSTATUSE CORQUTINE 3 - Returns the status of the
coroutine as “"RUNNInG'", "sUsSPENDED, or "OERD".

YIELDC ) - Gives control back to whatever called the
coroutine.

Sh



COROUTINES - EWAAPLE

This will make a circle move in a pattern around the
screen. Any button will reset the animation.

FURCTIONn _INITC ]
EEEHDUE=EDEHEHTEiHDUEJ

FUnRCTIon _UPDATEL )

IF C_NOME AND COSTATUSCC_AOME 2!="OEAD" THEN
CORESUREC C_AOUE 2

ELSE
C_AOWE=NIL

EnO
EﬁE CETIPC 3>03 C_AOWE=COCRERTEC AOME )

FUNRCTION -DRAUC )
CL5C1)
CIRCCH-Y.F-121

EEEIHT(EUHHEHT;H;H;1J

FUNRCTION AOMEC )
n-4-R=32.32-8

CURRENT="LEFT TO RILHT"
FOR _I=32.9b OO

n=l

YIELOY 3

EnO

CURRENT="TOP TO EOTTOR"

FOE T=32.4k 00 --TOF T0 EOTTON
YIELDC )

END

CURRENT="ERACK_ TO0 START"

FOR I=9b.32.-1 OO0 --ERACH TO0 START
n-4=1.1
YIELOY 3

EnO

EnO

g1



PUELISHINL Y0UF CRAES

Publishing your game is easy, but there are a few
steps you will need to do to get your game ready.
The first step is a title for your game. Just add two
comments to the top of your code. These will be
added to the cart image as the game's title.

PICO-E" WUU.PICO-B.C0N
9 @14 LEVEL:d

&
IIIIIIIIIIIIIIII

INITC Y AENU_INITC 2 [ | a0l
I

ENU_INITL 3
ﬂU_UFDHTE
-OFAW

AENMU_UPLATEL 1

(531 GAAE_INITC ) L]

NENU_DRANE 3 i

I: = 11 COIN THIEF ROMENTURE!

PRINT-SHADOMY EY DHLAD

aeThT cSuOnalr

The next step is creating the cart's label image.
Play your game, and when the screen looks how

you want it to look, hit F7. Then make sure to save!
. =14 LEVEL:H

@19 @14 LEWEL:Y
l...l...-"ﬂmmmml
L] [INCICY 1

L] Ll

COIN THIEF ROMENTURE!
EY DHLAN

CAPTURED LAEEL IRRGE
For the last step, hit ESC to go to Command Mode
and type SAYE YOURGARE.PNC to save as a shareable
image. Now it's ready to be shared!



PUELISHINL Td THE EES

The Lexaloffle Forum is a great place to publish
your PICO-8 games. It's referred to as "the BBS"
by the PICO-8 community, after the bulletin board
systems of the '80s and '90s. There you'll find a
wonderful, welcoming community of creators.

To submit your cart to the BBS, go to this address:
http://lexaloffle.com/pico-8.php?page=submit

After choosing Post a Cartridge, you'll come to a
page where you can submit your cartridge. When
asked for which file to upload, choose the cart
image you made (the YOURCANE . PE. PN file).

Post a Cartridge

yourgame.pd.png
Submit a new cartridge and optionally make a new PNE} |_mag&
forum thread for it. 13.2KB

CONTINUE > - a
Submit a New Cartridge

Terms of Use B | agree to the terms of use

Choose a file to upload: Choose File | Mo file chosen

Note: Please submit your cart in png format:

ot thumbnail

Title:
Version:

Y-NC-5A

share your


http://lexaloffle.com/pico-8.php?page=submit

EAPORTING FOR THE UEE

Once you have your cart image ready, you can
publish your game as an HTML5 game. This lets
you load and play the game in a web page, on its
own, without the need to have PICO-8 installed.

Once your game is loaded in PICO-8, hit ESC to go
to Command Mode, if you're not already there.
Type the command EXPORT YOURCARNE.HTAL to
export your game. After it creates YOURCANE. TS
and YOURGARE . HTAL, follow the instructions and
type FOLLER to see the Files that were created.

oF

PICO-H O.1.
[0 201y~ 1'I LE iALOFFLE CARES LLP

YPE HELP FOR HELP
* LOAD HOURGARE.PH.PNG

OADED YOURCAAE.PB.PNC 0 CHARS) yourgame.html
- . Chrome HTML Document
> EXPORT YOURGAME.HTAL 453 KB

HOURGANE . TS
HOURGAAE . HTAL

:. yourgame.js
> FOLDER % JavaScript File
d 1.23 MB

Go ahead and open the HTML file in your browser
to test it out. Everything should work just fine.

The HTML File is just a template to nicely embed
the Javascript file, so feel free to edit the HTML
file to make it look how you want. However, if you
upload the game to the web, make sure you don't
forget to upload the Javascript file as well.

bil



PUELISHINLG Oh ITCH. IO

The web site itch.io is a publishing platform for
independent game developers. It's probably one of
the most developer-friendly publishing platforms
around. Literally within minutes of exporting your
PICO-8 game, you can have your game published
on itch.io For all to see and play.

The first step is to follow the instructions on page
58 for prepping your game. The next steps are
almost the same as exporting to the web, but the
differences are important.

Follow the instructions for exporting to the web,
but when you type the EXPORT command, type
EXPORT INDEY.HTAL instead of your game's name.
It's very important you use INDEX.HTAL in this step!

The next step is to zip the two files, INDEY . HTAL
and INOEX.TS, into one zip file. (You can name the
zip file whatever you want.) On Windows, select
the two Files, right click on them, and then choose
"Send to compressed (zipped) folder". On macOS,
select the two Ffiles, right click on them, and then
choose "Compress 2 Items".

index,html
. Chrome HTML Document
453 KB F

ﬁ = yourgame.zip
index,js E
% JavaScript File

1.23 ME

bl



PUELISHING 0N ITCH. IO

All the remaining steps take place on the itch.io
web site. Obviously the First step is to create an
account!

Once your account is created, click the little drop-
down arrow next to your profile icon in the top-
right and choose "Upload new project" from the
list. You'll be taken to the new project creation
page. Most of the steps are self-explanatory, but
we'll walk through the parts that need particular
attention.

While you are playing your game,
you can take a screenshot with
the F6 key. These make good cover images!

Kind of project Make sure to set the "Kind of

HTML — You have a zlpor  PFOj€CE" tO HTML. This means
the game will be playable in

the browser, without having to download anything.

The File you need to uploqd is the zip
file you made on the previous page.

Because PICO-8 games are so small, it should only
take a short amount of time to upload your zip Ffile.

Nevertheless, make sure the file finishes uploading
Fully! This is important.

yourgame.zip - Uploading

TITITIII I T I IIrrs
bd



PUELISHINLG Oh ITCH. IO

Once your file is done ‘

uploading, that section Yeursame.zip

WI”. change to give you 350kb - Change display name

new Options- In that #| This file will be played in the browser
section, check the box

that says "This file will be played in the browser."

Viewport dimensions

Since PICO-8 games use
™ a square screen, set both
viewport dimension settings to 640 pixels.

Width: | 640 |px X Height: | [

As mentioned before, the rest of the settings are
fairly self-explanatory, so take some time to go
through them and change them as you see fit. For
instance, you may want to add the "pico-8" tag in
the Tags section to make it easier for other PICO-8
users to find your game.

When you're done, click the
"Save & view page" button at the

bottom of the page. This will take you to a preview

of what others will see when they view your game.

IF all is well, click the 2] button at the top

of the preview page. This will take you back to the

\Ljisjzi)lri::tst(oa;;?;eyour page's design be bOttom OF the prOJeCt page.
Draft — Only those who can edit the Change the Optlon From Draft
Restricted — Only authorized people to PUblIC and Clle Save.

® Public — Anyone can view the page

Done! You're now a published
m View page game developer! Huzzah!

b3



On the following pages you'll find a short summary
of the more common functions built into PICO-8.
They are loosely organized by category. For a list
and descriptions of all functions, check the manual
file called PICD-B.THT in PICO-8's install folder.

Green brackets[LIKE THI51 mean the information
is optional and the function will still run without it.

Graphics

CLSCLC 131 - Clear the screen to black, or to color

PSETCH.Y.[C1) - Set the pixel at#-4 to colorc

PCET( H.-41 - Returns the color at .4

LINECH1.-Y1.H2.-493.[C1)-Draw aline from #1.41 to
HE.- 42 with color

CIRCCH.-Y-R-LC1)-Draw acircle at #-4 of radiusk
with color ¢

CIRCFILLCY.Y-R-LC1)-Draw a filled circle at %4 of
radius R with color

RECT{H1.41.%3.43.[C1) - Draw arectangle from
¥1.41 to 4242 with colort

RECTFILLLHL-Y1.H2.-42.[C1)-Draw arectangle
from 1. 41 to Ha2.- 42 with color

SPRCS - Y. [U-HI.[LFLIP_X.FLIF_41) - Draw sprite
% at #.4, optionally U.-H sprites wide and tall, and
optionally flipped horizontally or vertically if
FLIP_Y or FLIP_Y are TRUE

COLORCCY - Set the default color to £ for functions
that use a color

b4



CURSORCH.-Y) - Set the PRINTY 1 function's cursor
position to ¥4

PRINTCT.LX.Y1.[C1)-PrintvalueT at#.4 using
colorc

Tables

AODOCT. Y2 - Add value ¥ to table T and return i

DELLT-W1 - Delete value W from table T

ALLLTI - Used in FOR loops to go through every
itemin table T, as long as T is using number-

based keys. Example:
FOR I In ALLCT OO
PRINTCI

Eno

FORERCHIT.F 1 - Go through every value in table T
and run function F with each value as a single
parameter for the functionF

PRIRS.T) - Used in FOR loops to go through every
item in table T and provide the key and value of

each item. Example:

FOR K- IN PRIRSCTI OO
PRINTC"REY:". K1
PRINTC"MALUE:". . W1

EnO

Input

ETNCE.LP1) - Return the state of buttonE (0-5), for
player P (0-1), as TRUE or FALSE

ETNPLE-LP1) - Return TRUE or FALSE depending on
whether button B (0-5), for player P (0-1), was
newly pressed or not

b5



Audio

SFRCN.[CI.[01-CL12
Play sound number i on channel £ starting at
note 0 and continuing forL notes
AUSICCN-CFADE]-CCHAND )
Play music starting at track i, fading in over
FABE milliseconds, reserving the channels
defined by the CHRN bitmask For music

Map

ACETH.-43 - Return the number of the sprite at
map location .4

ASET(H.-Y.[51) - Set the sprite at map location #.-4
to use sprite number s

AAPC AN AY.- 5K 54 U-H-LL12 - Draw map tiles,
starting with map tile . A4, to screen
coordinate 5%.54, and draw U tiles wide and H
tiles tall, and if L is specified, draw only the cells
that have sprites with matching bits on

Math

AAHCH.-Y3 - Return the max of the values ® and Y

AINCH.-43 - Return the min of the values# and 4

AIOCH.Y-22 - Return the middle value of #,4, and 2,
no matter the order. For example, NIbi k-39
returnsh

FLRLH1 - Return the closest integer below #. So
FLRIY.bJreturns4 and FLRL -Y4.k 1 returns -5.

COSCHY - Return the cosine of i, where the start of

bb



acircleiso.mandafullcircleisl.n

SINCH I - Return the inverse sine of # (because
positive 4 is down in PICO-8's screen coordinate
system), and like cosine, the start of a circle is
0.0 and a full circleisl.m

ATANZC 0. 041 - Convert .- 04 into an angle
fromD.0 tol.0 that represents the direction
pointing from 0.0 to O¥. 04

SERT(H 1 - Return the square root of &

RESCH 1 - Return the absolute value of #

ROOCLH 1) - Return a random number between . O
and ¥, or betweenD.O0 and 1.0 if ¥ is not given
SRANDCH Y - Initialize the random number generator
using # to get predictable random numbers
TIREL 3 - Return the seconds since PICO-8 started

TONUALS ) - Return the string 5 as a number

Strings

HS - Return the number of characters in string 5

51..58 - Join string 51 to string 52

SlIB(5.B-LE1Y - Get a sub-section of string 5,
starting at characterE, until the end of the
string, or forE number of characters

TOSTRIN Y - Return the numberh as a string

Colors

DBEEBEERE: -
8 [RGB 11 121 13 R
b1




NUSIC REFERENCE

In the top-left of PICO-8's i e

Sound Editor, you can switch scTBEEK ~MmmEm—
. -uill
to tracker mode. In this mode, [SErACEtIEILREITIRT
. e Ce L 1l0 L 10 E 10 E 10
you can type in specific notes [CRtEHEETIHECIHET
o E 10 L 10 A 10 L 10
using your computer keyboard EtTHEIELRTIEICRY:

R 10 G 10 A 10 G 10

like a piano. R 1042 |c 10428 104z |c 10

E 10 G 10 E 10 G 10

On the piano below, you can
see which keyboard keys (in black and white)
correspond to which musical notes (in blue).

Zln|C|Y|EIN|A|e|H|E|R|T|H]|U
CODEFLAECDEFLHE




NORE PICO-B RESOURCES

There are many resources on the Web for you to
learn more about PICO-8. I'm going to list just a
few of them here.

Offical Lexaloffle PICO-8 Site
WWW.pico-8.com

The PICO-8 BBS
www.lexaloffle.com/bbs/?cat=7

Unofficial PICO-8 Wiki
pico-8.wikia.com/wiki/Pico-8 Wikia

PICO-8 Fanzines by Arnaud De Bock
sectordub.itch.io/pico-8-fanzine-1
sectordub.itch.io/pico-8-fanzine-2
sectordub.itch.io/pico-8-fanzine-3
sectordub.itch.io/pico-8-fanzine-4

PICO-8 Cheatsheet by Carlos Aguilar
neko?250.github.io/pico8-api

Awesome PICO-8 - Curated List by Felipe Bueno
github.com/felipebueno/awesome-PICO-8

PICO-8 Resources by Marco Secchi
pico-8-resources.zeef.com/marco.secchi

bY


http://www.pico-8.com
http://www.lexaloffle.com/bbs/?cat=7
http://pico-8.wikia.com/wiki/Pico-8_Wikia
http://sectordub.itch.io/pico-8-fanzine-1
http://sectordub.itch.io/pico-8-fanzine-2
http://sectordub.itch.io/pico-8-fanzine-3
http://sectordub.itch.io/pico-8-fanzine-4
http://neko250.github.io/pico8-api
http://github.com/felipebueno/awesome-PICO-8
http://pico-8-resources.zeef.com/marco.secchi

PICO-H FONT REFERENCE
Until you're used to the font in PICO-8, sometimes
it can be hard to tell which character is which. This

handy chart should help you out.

Q= ® H B ¥ <K< &F ¥ A |+ A= e VAN

T = I sl ™ | by O "

H NN <IN ONOOOAO® |l =~ ea - a e N

" M ITINOrool =" s 5 o'

<OV AWWUOIHRMPY T 2000xxwvikFEF>D>=X>N

BERQxaxex Q-0+ QMO A=

T O UT VY Mo HMNMX < E C O QUT C VWP S > 2 X XN

(=g s Y PRI TERE B o o o O | e = B Ny e e e el Y|

10



oood

E WHAT; IS THIS PLACE?
®
T}

‘r-.--i

SUME

1 BUBBLE BAO:

l'____.'\.-' R T T e Tl Tl T ol Tl
L Lo L L L N | W

EEAE]

(=1 ] =

R |-;:| EfEEe it

mm—-me

ELECTRICITH

i
‘\\TEES ChATO ETHHT il.gl
.-L-"I—-"__JJ TJE
o e II'.IEHRIHEHI'IEE 2017
STARS

o

Tk

= =11 == =1
¥

.; =

)

M T
T'-, .'-E'-g



https://twitter.com/enargy
https://twitter.com/castpixel
https://twitter.com/johanpeitz
https://twitter.com/pixel_cod
https://twitter.com/musurca
https://twitter.com/guerragames
https://twitter.com/trasevol_dog
https://twitter.com/platformalist
https://twitter.com/morningtoast
https://www.lexaloffle.com/bbs/?uid=10873&mode=carts
https://www.lexaloffle.com/bbs/?uid=10844&mode=carts
https://www.lexaloffle.com/bbs/?uid=13845&mode=carts

CLEXALOFFLE

The Portland Indie Game Squad is a non-profit dedicated to supporting the
health and continued expansion of game developers in Portland, the Pacific
Northwest, and online. They provide events, resources, and networking
activities for art and technology creatives.

A huge thanks goes to PIGSquad for the creation of this zine. It would not
have been possible to create without their help and support. If you'd like to
find out more, visit pigsquad.com and see what they are all about. Consider
donating at patreon.com/pigsquad to support this wonderful group.



http://pigsquad.com
http://patreon.com/pigsquad
https://twitter.com/lexaloffle

