
1

2

pico-8 community creations
(@:twitter Ï:bbs)

@fredbednarski @rtrntospielburg @johanpeitz
@trasevol_dog @platformalist @guerragames
dr4igÏ @scotaire eribanÏ
@quickalas529 @tomsolacroup @liquidream

https://twitter.com/fredbednarski
https://twitter.com/rtrntospielburg
https://twitter.com/johanpeitz
https://twitter.com/trasevol_dog
https://twitter.com/platformalist
https://twitter.com/guerragames
https://www.lexaloffle.com/bbs/?uid=3054&mode=carts
https://twitter.com/scotaire
https://www.lexaloffle.com/bbs/?uid=25524&mode=carts
https://twitter.com/quickalas529
https://twitter.com/tomsolacroup
https://twitter.com/liquidream

3

table of contents

Introduction.. 4
A Word About PICO-8... 5
Using PICO-8... 8
The Editors.. 9
Coordinates.. 14
Programming Basics... 15
The Game Loop.. 20
Tutorials... 23
Cave Diver Tutorial.. 24
Lunar Lander Tutorial... 34
PICO-8 for Game Developers................................. 48
More on Tables.. 49
Particle Systems.. 52
Game States... 54
Coroutines.. 56
Publishing Your Games.. 58
Publishing to the BBS... 59
Exporting for the Web... 60
Publishing on itch.io... 61
References... 64
Code Reference... 64
Music Reference.. 68
More PICO-8 Resources... 69
PICO-8 Font Reference.. 70

4

introduction

The original reason for creating this zine was
simply to have printed materials for a PICO-8
workshop I was teaching with the Portland Indie
Game Squad (PIGSquad). While it still has that
purpose, I've decided to make it useful for anyone
who wants to pick up PICO-8 and get started. I love
making things in PICO-8, and I hope you will too.

The idea for this zine was absolutely inspired by
Arnaud De Bock's famous PICO-8 fanzines. Just as
they allowed me to easily get started with PICO-8, I
can only hope this zine does the same for others.

There is so much more I would have loved to add
to this issue, but I could only make it so long in the
time I had. However, that means I have plenty of
material for future issues, of which I hope there
will be many.

I had a lot of help and support while putting this
together and I appreciate all of it.

Enjoy!
Dylan (@MBoffin)

© 2017 Dylan Bennett
Contact: @MBoffin ~ mboffin.itch.io
Patreon: patreon.com/mboffin
PICO-8 logo used with permission from Lexaloffle

http://twitter.com/MBoffin
http://mboffin.itch.io
http://patreon.com/mboffin

5

a word about pico-8

I was captivated by the charm of PICO-8 from the
first moment I tried it. I have yet to meet anyone
who doesn't take a liking to PICO-8 after seeing
it in action. There's something about it that just
captures people's hearts.

It's well known that
creativity thrives within
constraints. Nowhere
is that more true than
with PICO-8. Limited
screen size, color palette,
code length, and so
on all contribute to an
environment where you

are actually free to be more creative than you
might be with other game engines.

Unity is a great example of a game engine with
very few constraints on what you can create. While
that's good, it also means you have many decisions
to make. PICO-8's constraints do away with many
of those decisions and let you focus on just
creating your game.

For example, a Unity game might have to work on
dozens of screen resolutions, but in PICO-8, you
get one resolution of 128x128. This frees you to
put more effort into making your game work well
in that one resolution.

6

a word about pico-8

On the other side of the
coin, PICO-8's constraints,
such as code length, will
inevitably force you to
make decisions—decisions
such as what is really
important to keep in
your game. Unity has no
constraint on code length,

so you're free to just keep adding as many features
as you wish. This is not necessarily a good thing
when it comes to game development.

There's another aspect to PICO-8's charm that,
for me, reaches back decades. When I was a kid,
I remember magazines that would include whole
programs written in BASIC. You just typed in the
code and ran it! Sometimes the program made a
cool picture, sometimes it would be a simple game.
By itself, this was interesting and fun, but what
really captured my curiosity and hooked me for life
was changing the code to make it do new things.
I found something akin to this in PICO-8, and it's
rooted in the culture of the PICO-8 community.

Joseph White (aka zep), the creator of PICO-8, has
created a community around PICO-8 where sharing
what you create is not only easy, but encouraged.
When you load someone else's creation in PICO-8,
you can run it, but you can also look at the code,

7

change the sprites, do whatever you want. You
have as much access as the person who created
it! For me, this really harkens back to those BASIC
programs found in magazines.

The easiest way to share
your PICO-8 creations is by
making a game cartridge,
or cart for short. These
are like digital versions of
physical game cartridges.
They're easy to make and
easy to share because
they're just images! The
really cool part is that all of
your game's information is
stored in the image of the cart! All of it! The code,
art, music, everything. If someone has that cart
image, they have everything they need to run your
game in PICO-8.

As you create new things in PICO-8, I encourage
you to share what you create with others on the
Lexaloffle web site. (See page 58 on how to do
that.) Just as you can learn from what others have
created, others will be able to learn from what you
are creating.

I can't wait to see what you create!

a word about pico-8

8

using pico-8

When you first run PICO-8,
you start in a mode where
you can type in commands.
From this mode you can
type commands like save,
load, and run. You can use
the command help to see
what other commands you
can run from this mode.

Use the ESC key to switch back and forth between
editor mode and command mode. When you are
playing a game and hit ESC, you'll come back to
command mode. Just hit ESC again to go into
editor mode.

You'll find notes about each editor and shortcuts
relevant to each on the following pages.

The shortcuts below are possible no matter which
editor you are currently using.

Shortcuts:
•	Alt-Right/Left - Next/previous editor
•	Ctrl-S - Save
•	Ctrl-R - Run
•	Ctrl-M - Mute/Unmute
•	Alt-Enter - Fullscreen
•	Alt-F4, Cmd-Q - Quit
(Use Cmd instead of Ctrl on macOS.)

9

code editor

Notes:
All your code is written
here. One of PICO-8's
limits is how much code
you can use. This limit is
a bit hard to understand
for people new to PICO-8.
It's based on something
called tokens. These are
basically individual bits of code. For example,
something like x=width+7 takes up five tokens, one
token for each part (x, =, width, +, and 7). You are
allowed 8192 tokens of code, so you'll be fine until
you're making a fairly large game. You can see the
number of tokens you've used in the bottom-right.

Shortcuts:
•	Alt-Up/Down - Go up/down a function at a time
•	Ctrl-L - Move to a specific line number
•	Ctrl-Up/Down - Move to the very top/bottom
•	Ctrl-Left/Right - Move left/right by one word
•	Ctrl-F, Ctrl-G - Find text, or find again
•	Ctrl-D - Duplicate the current line
•	Tab/Shift-Tab - Indent/un-indent the currently

selected line(s)
•	Ctrl-Tab/Shift-Ctrl-Tab - Move to next/previous

code tab
(Use Cmd instead of Ctrl on macOS.)

10

sprite editor

Notes:
Sprites are the pieces of art
that make up your game.
They might be characters,
map tiles, pickups, titles,
backgrounds, anything.

PICO-8 allows you to have
256 8x8 sprites. These are
split across 4 tabs labeled 0-3. However, the last
two tabs are shared with the Map Editor. So if you
have a really big map, you won't be able to use the
last two tabs of sprites. But if you're using the last
two tabs of sprites, you won't be able to use the
lower half of the Map Editor.

Shortcuts:
•	H/V - Flip the sprite horizontally/vertically
•	R - Rotate the sprite clockwise
•	Q/W or - / = - Move to the previous/next sprite
•	Shift-Q/Shift-W or _ / + - Move one row of

sprites back/forward
•	1/2 - Move to the previous/next color
•	Up/Down/Left/Right - Loop sprite
•	Mousewheel Up/Down, < / > - Zoom in/out
•	Space - Pan around while space is held down
•	Right-click - Select the color under the mouse

11

map editor

Notes:
PICO-8's map tiles use
the 8x8 sprites from the
Sprite Editor. This means
16x16 tiles will fill an entire
screen.

Even though you can have
a maximum map size of 128
tiles wide and 64 tiles tall, the lower half of the
map actually shares space with the last two tabs of
the Sprite Editor. So you need to decide if you want
a large map or if you want a lot of sprites.

No matter what is drawn in sprite #0, that sprite is
used as an "eraser" sprite. You can use it to erase
map tiles.

Shortcuts:
•	Mousewheel Up/Down, < / > - Zoom in/out
•	Space - Pan around while space is held down
•	Q/W, - / = - Move to the previous/next sprite
•	Shift-Q/Shift-W, _ / + - Move one row of sprites

back/forward
•	1/2 - Move to the previous/next color
•	Up/Down/Left/Right - Loop sprite
•	Right-click - Select the sprite under the mouse

12

sound editor

Notes:
A PICO-8 cart can have
up to 64 sounds. Each
sound has 32 notes. You
can control the frequency,
instrument, volume, and
effect for each note.
You can also change the
playback speed of the
whole sound and make sections of it loop.

The Sound Editor has two modes: pitch mode and
tracker mode. Pitch mode is useful for simple
sound effects, whereas tracker mode is useful for
music. See page 68 for a PICO-8 music reference to
use for tracker mode.

Shortcuts:
•	Space - Play/stop
•	- / + - Go to previous/next sound
•	< / > - Change the speed of the current sound
•	Shift-Space - Play the current group of 8 notes
•	Shift-Click on an instrument, effect, or volume to

change all notes in a sound at once
•	Ctrl-Up/Ctrl-Down, PgUp/PgDn - Move up/down

4 notes at a time (tracker mode only)
•	Ctrl-Left/Ctrl-Right - Switch columns (tracker

mode only)
(Use Cmd instead of Ctrl on macOS.)

13

music editor

Notes:
The Music Editor allows you
to create patterns of music
using the sounds from the
Sound Editor. Each pattern
has four channels that can
each contain a sound from
the Sound Editor.

Playback of patterns is controlled by the three
buttons in the top-right (two arrows and a square).
If the right-facing arrow is on, that marks a start
point. If the left-facing arrow is on, that marks a
loop point. If the square button is on, that marks a
stop point.

Playback flows from the end of one pattern to
the beginning of the next. However, if playback
reaches the end of a pattern and finds a loop point,
it will search backward until it finds a start point
and play from there. If playback reaches the end of
a pattern and finds a stop point, playback will stop.

Shortcuts:
•	Space - Play/stop
•	- / + - Go to previous/next pattern

Note: You can edit sounds in the Music Editor, so
most Sound Editor shortcuts also work here!

14

coordinates

PICO-8's screen space is 128 pixels wide and 128
pixels tall. This may not seem like a much at first,
but you can do a lot in that amount of space!

Notice the coordinate 0,0 is in the top-left and
coordinate 127,127 is in the bottom-right. This
means positive x goes to the right and positive
y goes down. (This may be different from what
you're used to, where positive y is usually up.) Also
remember that because we start counting at 0, the
position 127 is actually the 128th pixel.

128

1
2
8

15

programming basics

Fitting a full introduction to programming in
this zine just wouldn't be worth it. I wouldn't be
able to do the job justice and still get to all the
fun stuff PICO-8 has to offer. Not to mention,
there are already so many great introductions to
programming on the Internet.

However, there are a few specific things I would
like to ensure are covered before we get to all the
fun stuff. These are particularly important. Even if
you don't know much about programming, you'll
be able to follow along if you just understand
these few things. If know programming already,
you can skip all this stuff.

Variables
Variables are ways to store information with an
easy-to-remember name. As the name "variable"
implies, the information stored in the variable
can vary, or change. In PICO-8, variables can hold
numbers, text, and the value true or false. Here
are a few examples of variables:

Some words are reserved and you can't use them
for variable names (like the word "function").
You also can't start the name of a variable with a
number.

x=64
name="dylan"
alive=true

16

programming basics

Functions
Functions are a list of instructions for the
computer that are all grouped together under one
name. Functions are usually created if you have a
certain set of actions you want the computer to do
many different times.

Functions are written with parentheses after the
name of the function. This is so you can give the
function extra information in case it needs that
extra information to do its job. Even if no extra
information is needed, you still need to write the
parentheses.

Here's an example function called draw_target().
It draws a target shape using filled circles. Note
that it needs an X and a Y coordinate to do its job:

Maybe you noticed something: circfill() is a
function too! It's a function built into PICO-8, so
you don't have to write the steps yourself, but
it's still a function. You give it an X/Y coordinate,
a radius, and a color, and it draws a filled circle
at X/Y, at that radius, and with that color. And
circlfill() is just one of many built-in functions!

function draw_target(x,y)
 circfill(x,y,16,8)
 circfill(x,y,12,7)
 circfill(x,y,8,8)
 circfill(x,y,4,7)
end

17

programming basics

Usually a function just does the job you need it to
do and that's that, like the draw_target() function
above, or circlfill(). But sometimes you need a
function to give back, or return, information when
it's done doing all of its steps.

Say you make a function that does a bunch of
math, but you want to know the result when it's
done. In other words, you want it to return the
result back to you. Easy enough. You just use
return and then specify what you want it to return.
Here's a real example:
function area(width,height)
 return width * height
end

w=8
h=5

if (area(w,h) > 25) then
 print("big!")
end

When that function gets run, the number returned
would be 40. Since 40 is indeed greater than 25, the
print() function would then happen.

Functions are the backbone of anything you will
create in PICO-8. Most games are really just many,
many functions strung together, each one making
changes to things in the game as the players play.
Really understanding how your code moves from
one function to another is the key to being able to
make great games.

Hard to tell which letter is which? Check the font reference on page 70!

18

programming basics

Tables
Tables are a way to store a lot of information all
together under one variable name. Most PICO-8
games will use a table at some point or another, so
it's good to understand how they work.

When you add a piece of information, or value, to
a table, it gets paired with a name or a number
called a key. The key is what you use to get the
information back out of the table. You can say,
"Look up the information stored in that table using
this key." Keys are like the index in a book.

If you add values to a table without setting the key,
the key will automatically be assigned as a number.
Let's see an example of what this looks like.

19

programming basics

Now let's see how that looks in code. Take note
how we create the player table using empty curly
braces. Then we add the values with named keys.
For the items table, we create the table with the
values inside the curly braces, but without names.
The keys get automatically assigned as numbers.

player={}
player.x=112
player.y=73
player.alive=true

items={"sword","cloak","boots"}

That's how to get values into a table. But what
about getting values back out? For keys that
are names, you can just use table.key, such as
player.x or player.alive. But for keys that are
numbers, you use square brackets with the number
of the key inside, such as items[1] or items[3].

If your table uses numbers for keys, you can find
out how many values are stored in a table by
using the number sign (#), such as #items. In our
example, this would give you 3. This is useful if you
have to loop through all the values in a table and
do something with each value. Here's an example:
for i=1,#items do
 print(items[i])
end

This starts i at 1 and counts to #items (which is 3).
Each time, it will print the value at items[i]. Since
i goes from 1 to 3, every item will be printed.

20

the game loop

PICO-8 uses three specially-named functions to
create what's called a game loop. The _init()
function happens one time, then _update() and
_draw() happen in a loop until your game ends.
Here's the basic structure of the PICO-8 game loop
and what each functions does:

You could put all of your code inside these three
functions, but it's generally not considered a good
idea. A better solution is usually to make other

21

functions that do specific things, and then have
_init(), _update(), or _draw() run those functions.

For example, instead of putting player movement
code in _update(), write your own function called
move_player() and run that inside _update().
Here's an example of how it would all look:

the game loop

function _init()
 make_player()
end

function _update()
 move_player()
end

function _draw()
 cls() --clear screen
 draw_player()
end

function make_player()
 px=64
 py=64
 psprite=1
end

function move_player()
 if (btn(0)) px-=1 --left
 if (btn(1)) px+=1 --right
 if (btn(2)) py-=1 --up
 if (btn(3)) py+=1 --down
end

function draw_player()
 spr(psprite,px,py)
end

See how the game loop functions are kept nice and
tidy? Now you can see a good overview of how the
game works just from those three functions.

But don't

forget to

make sprite

#1!

Try it
out! Type this code into PICO-8 and
run it!

22

pico-8 community creations
(@:twitter Ï:bbs)

@johanpeitz electricgryphonÏ jcwilkÏ
@quickalas529 @morningtoast @guerragames
ultiman3rdÏ @neko250 @matthughson
@liquidream @taeckerwyss ultrabriteÏ

https://twitter.com/johanpeitz
https://www.lexaloffle.com/bbs/?uid=10844&mode=carts
https://www.lexaloffle.com/bbs/?uid=10873&mode=carts
https://twitter.com/quickalas529
https://twitter.com/morningtoast
https://twitter.com/guerragames
https://www.lexaloffle.com/bbs/?uid=18260&mode=carts
https://twitter.com/neko250
https://twitter.com/matthughson
https://twitter.com/liquidream
https://twitter.com/taeckerwyss
https://www.lexaloffle.com/bbs/?uid=13845&mode=carts

23

tutorials

When doing these tutorials, go ahead and change
things ! Don't want a gray cave? Make it green!
Gravity is too light? Make it stronger! PICO-8 is a
great environment for playing and tinkering, and
these tutorials are no exception.

When writing the code, you'll often add on to
what you've already written. Code you've already
written will be gray and new code will black.

this is code you've already written!

this is new code!

It's important to save your work as you go. But just
as importantly, you need to know how to load your
game later.

Use the save command along with the name of
your game to save your game. (Don't use spaces
in the name, though!) PICO-8 will add .p8 to the
end of the filename so that your computer knows
it's a PICO-8 game. You can use the load command
to load your game later. At any time after you've
saved or loaded your game, you can hit CTRL-S
(CMD-S on macOS) to save any changes.

24

cave diver ~ step 1

The first game we’ll make is a classic, one-button,
side-scrolling game. There have been hundreds
of games like this, the most recent hit being
Flappy Bird. In our variation, we’re flying/bouncing
through a cave trying to get as deep into the cave
as we can. It’s a fun, easy game!

NOTE: Start a new game by rebooting PICO-8 with
the reboot command. (Hit ESC if you aren't already
in command line mode.) Then be sure to save your
game with the instructions on the previous page!

We only need to create three sprites in the Sprite
Editor for this whole game. Sprite #1 for jumping,
#2 for falling, and #3 for when you hit the walls.

SPRITE #2

SP
RIT

E
#3

You don’t

have to copy

these! You can

make your
own!

SPRITE #1

25

function _init()
 game_over=false
 make_player()
end

function _update()
end

function _draw()
 cls()
 draw_player()
end

cave diver ~ step 1

SAVE & RUN IT!

Okay, so it’s not mind-blowing yet. But it should at
least work and show you the player on the screen.

function make_player()
 player={}
 player.x=24 --position
 player.y=60
 player.dy=0 --fall speed
 player.rise=1 --sprites
 player.fall=2
 player.dead=3
 player.speed=2 --fly speed
 player.score=0
end

function draw_player()
 if (game_over) then
 spr(player.dead,player.x,player.y)
 elseif (player.dy<0) then
 spr(player.rise,player.x,player.y)
 else
 spr(player.fall,player.x,player.y)
 end
end

Hard to tell which letter is which? Check the font reference on page 70!

26

cave diver ~ step 2

Let’s make that player jump with the UP button!
PICO-8 uses numbers 0 through 5 to represent
each button the player can press. Here is how each
number connects up to each button:

SAVE & RUN IT!
Bouncy! The secret to this game is that the player
never moves forward, just up and down!

0 1
2

3
4 5

Remember, code in gray is code you’ve already
written. Just add the code in black!

function _update()
 move_player()
end

function move_player()
 gravity=0.2 --bigger means more gravity!
 player.dy+=gravity --add gravity
 	
 --jump
 if (btnp(2)) then
 player.dy-=5
 end
 	
 --move to new position
 player.y+=player.dy
end

27

cave diver ~ step 3

The cave is really just a list from left to right of
how low to draw the ceiling and how high to draw
the floor for each column of the cave. The faster
we add columns to the end and remove columns
from the beginning, the faster the cave flows by!

Make new
columns here!

Remove old
columns here!

function _init()
 game_over=false
 make_cave()
 make_player()
end

function _update()
 update_cave()
 move_player()
end

function _draw()
 cls()
 draw_cave()
 draw_player()
end

Let's modify our game loop functions to get ready
to add the cave. Then we'll add the cave functions.

28

cave diver ~ step 3

SAVE & RUN IT!

function make_cave()
 cave={{["top"]=5,["btm"]=119}}
 top=45 --how low can the ceiling go?
 btm=85 --how high can the floor get?
end

function update_cave()
 --remove the back of the cave
 if (#cave>player.speed) then
 for i=1,player.speed do
 del(cave,cave[1])
 end
 end

 --add more cave
 while (#cave<128) do
 local col={}
 local up=flr(rnd(7)-3)
 local dwn=flr(rnd(7)-3)
 col.top=mid(3,cave[#cave].top+up,top)
 col.btm=mid(btm,cave[#cave].btm+dwn,124)
 add(cave,col)
 end
end

function draw_cave()
 top_color=5 --play with these!
 btm_color=5 --choose your own colors!
 for i=1,#cave do
 line(i-1,0,i-1,cave[i].top,top_color)
 line(i-1,127,i-1,cave[i].btm,btm_color)
 end
end

When adding new columns, we look at the last
column's floor and ceiling heights. Then we go up
or down randomly from there, but only just a little
bit, so it looks like a natural change.

To better understand the code in this step, make sure to read the section on tables!
(pg18)

29

cave diver ~ step 4

You probably noticed you can run into the sides of
the cave and nothing happens. Let’s fix that!

Also, certain things should stop happening if we
hit the sides of the cave. For example, the cave
and the player should stop moving. We’ll use the
variable game_over for that.

SAVE & RUN IT!
Everything should stop if you hit the sides of the
cave! You’ll notice that we now get to see Sprite #3
when the game is over.

We almost have a complete game! We’re so close!
All we have left is to add a score (so we can see
how far we’ve traveled), some sounds, and a way to
restart the game if we crash into the cave.

function _update()
 if (not game_over) then
 update_cave()
 move_player()
 check_hit()
 end
end

function check_hit()
 for i=player.x,player.x+7 do
 if (cave[i+1].top>player.y
 or cave[i+1].btm<player.y+7) then
 game_over=true
 end
 end
end

30

function _draw()
 cls()
 draw_cave()
 draw_player()

 if (game_over) then
 print("game over!",44,44,7)
 print("your score:"..player.score,34,54,7)
 else
 print("score:"..player.score,2,2,7)
 end
end

cave diver ~ step 5

SAVE & RUN IT!

Our player already has a score, so let’s add to it
as the player moves. We'll show the score in the
corner as they play. Then when the game’s over,
we'll tell them and show the player their score.

function move_player()
 --add gravity
 player.dy+=0.2

 --jump
 if (btnp(2)) then
 player.dy-=5
 end
	
 --move to new position
 player.y+=player.dy
	
 --update score
 player.score+=player.speed
end

31

cave diver ~ step 6

Now let’s add sound! Sound #0 will be the jump
sound and sound #1 will be the game over sound.

function move_player()
 --add gravity
 player.dy+=0.2

 --jump
 if (btnp(2)) then
 player.dy-=5
 sfx(0)
 end

 --move to new position
 player.y+=player.dy

 --update score
 player.score+=player.speed
end

function check_hit()
 for i=player.x,player.x+7 do
 if (cave[i+1].top>player.y
 or cave[i+1].btm<player.y+7) then
 game_over=true
 sfx(1)
 end
 end
end SAVE & RUN IT!

32

cave diver ~ step 7

SAVE & RUN IT!

Our very last step is easy. When the player loses,
we need to wait for a button to be pressed to
restart the game. But we also need to tell the
player which button that is!

(Hint: hit shift-x to make the × character.)

You did it! You made a game! Now get your friends
to play and see who can get the highest score!

function _update()
 if (not game_over) then
 update_cave()
 move_player()
 check_hit()
 else
 if (btnp(5)) _init() --restart
 end
end

function _draw()
 cls()
 draw_cave()
 draw_player()

 if (game_over) then
 print("game over!",44,44,7)
 print("your score:"..player.score,34,54,7)
 print("press × to play again!",18,72,6)
 else
 print("score:"..player.score,2,2,7)
 end
end

33

cave diver ~ etc

We have a complete game at this point, but
there’s a lot we could continue adding from here.
Maybe things to pick
up along the way that
make you go faster or
slower? Maybe extra
lives? Maybe enemies to
avoid? The list is endless.

However, try not to get
stuck in adding every
feature you want before
letting others play it. Let
people play it early and often! Get feedback from
players on what they like and don’t like. Really
listen to what they have to say. What might sound
fun in your head might not be as fun once it’s in
the game.

At this point, if you want your friends and family
to play, they need to come to your computer to
play. That’s fine, but not always workable. On page
58 you’ll find a section with easy instructions for
posting your game on the web where others can
play it.

Are you ready to make your next game? Let’s go!

34

lander ~ step 1

The second game we’ll make is a bit more complex
than the first game, but still a lot of fun. In this
game you're guiding a lander onto a landing pad.

Just like the first tutorial, use the reboot command
to start a new game.

Let's add code to draw the lander. You can make
your lander look however you want. Just make
sure to put it in Sprite #1. (The second sprite spot.)

function _init()
 make_player()
end

function _update()
end

function _draw()
 cls()
 draw_player()
end

function make_player()
 p={}
 p.x=60 --position
 p.y=8
 p.dx=0 --movement
 p.dy=0
 p.sprite=1
 p.alive=true
 p.thrust=0.075
end

function draw_player()
 spr(p.sprite,p.x,p.y)
end

SAVE & RUN IT!

SPRITE #1

35

lander ~ step 2

As you can see, that just showed the lander. So
let's add some gravity and make our lander fall!

We need a function to move the player. We move
the player by adding the player's movement (p.dx
and p.dy) to the player's position (p.x and p.y).

Then to add gravity to our game, we just make sure
we're always adding a gravity amount (g) to the
player's up/down movement (p.dy).

Remember, gray code is code you already wrote!

function _init()
 g=0.025 --gravity
 make_player()
end

function _update()
 move_player()
end

function move_player()
 p.dy+=g --add gravity
	
 p.x+=p.dx --actually move
 p.y+=p.dy --the player
end

SAVE & RUN IT!

The lander falls now! Because move_player()
happens every time the game updates (30 times
a second), gravity will always be added to the
player's movement. However, the player still has
no control over the lander, so let's add that.

36

lander ~ step 3

When the player thrusts, we want it to play an
engine sound. Use the Sound Editor to make that
in Sound #0. Make sure to use the second to last
instrument! (It's the most engine-thrusty sound.)

function move_player()
 p.dy+=g --add gravity

 thrust()
	
 p.x+=p.dx --actually move
 p.y+=p.dy --the player
end

function thrust()
 --add thrust to movement
 if (btn(0)) p.dx-=p.thrust
 if (btn(1)) p.dx+=p.thrust
 if (btn(2)) p.dy-=p.thrust

 --thrust sound
 if (btn(0) or btn(1) or btn(2)) sfx(0)
end

SAVE & RUN IT!

Things to note:

•	Speed is at 06

•	Use this sound:

•	You only need one
dot of sound! (And
the lower the note
used, the more
engine-thrusty it
will sound.)

37

lander ~ step 4

We can fly our lander now, but you'll notice we can
go zooming off the edge of the screen! We need
a function to stay on the screen. This will check
the new position to see if it's off the edge of the
screen. If so, it will reset them back to the edge
and cut their movement in that direction to zero.

We check if p.x is more than 119 because p.x is on
the left side of the sprite. If p.x was more then 119,
it would draw past the right edge of the screen,
and that's what we're trying to prevent!
function move_player()
 p.dy+=g --add gravity

 thrust()
	
 p.x+=p.dx --actually move
 p.y+=p.dy --the player

 stay_on_screen()
end

function stay_on_screen()
 if (p.x<0) then --left side
 p.x=0
 p.dx=0
 end
 if (p.x>119) then --right side
 p.x=119
 p.dx=0
 end
 if (p.y<0) then --top side
 p.y=0
 p.dy=0
 end
end

SAVE & RUN IT!

38

lander ~ step 5

function _draw()
 cls()
 draw_stars()
 draw_player()
end

function rndb(low,high)
 return flr(rnd(high-low+1)+low)
end

function draw_stars()
 srand(1)
 for i=1,50 do
 pset(rndb(0,127),rndb(0,127),rndb(5,7))
 end
 srand(time())
end

We have a functioning lander! Let's make the rest
of the environment. We need stars, a landing pad,
and the ground, and we want them to be random.
But let's just start with stars.

PICO-8's random number generator, rnd(), will
give you a random number between 0 and the
number you give it. But we need a function that
gives us a random number between any number
we choose (not just 0) and any other number. We'll
make our own "random between" function called
rndb() that takes a low and high number and gives
us a random number between them.

We're also using a function called srand() that
ensures we get the same random numbers each
time we draw the stars, so they don't jump around.

SAVE & RUN IT!

39

lander ~ step 6

Adding ground is probably the most complex part
of the game, believe it or not. We're going to write
our code in a few different steps, and then we'll
run it.

We're going to add two new functions. The first
for making the ground and the second for drawing
it while we play. Making the ground happens at
the beginning, so running that function happens
in _init(). Drawing the ground would of course
happen in _draw(). Let's just add the lines where
we run those functions first.
function _init()
 g=0.025
 make_player()
 make_ground()
end

function _draw()
 cls()
 draw_stars()
 draw_ground()
 draw_player()
end

The function to create the ground requires some
explanation of what's going on.

We're going to store the ground as a list of ground
heights. There are 128 pixels across the screen,
so we'll store 128 ground heights. When we draw
our ground, we just go through that whole list,
beginning to end, and draw a line from that ground
height down to the bottom of the screen.

40

lander ~ step 6

First we'll figure out the position of the landing
pad and make that into flat ground (all the same
ground height). Then we'll add bumpy ground to
the left and right of the landing pad.
function make_ground()	
 --create the ground
 gnd={}	
 local top=96 --highest point
 local btm=120 --lowest point

 --set up the landing pad
 pad={}
 pad.width=15
 pad.x=rndb(0,126-pad.width)
 pad.y=rndb(top,btm)
 pad.sprite=2

 --create ground at pad
 for i=pad.x,pad.x+pad.width do
 gnd[i]=pad.y
 end

 --create ground right of pad
 for i=pad.x+pad.width+1,127 do
 local h=rndb(gnd[i-1]-3,gnd[i-1]+3)		
 gnd[i]=mid(top,h,btm)
 end
	
 --create ground left of pad
 for i=pad.x-1,0,-1 do
 local h=rndb(gnd[i+1]-3,gnd[i+1]+3)
 gnd[i]=mid(top,h,btm)
 end
end

function draw_ground()
 for i=0,127 do
 line(i,gnd[i],i,127,5)
 end
end

SAVE & RUN IT!

41

lander ~ step 7

Ignoring the fact that you can still fly through the
ground, you'll notice our landing area is kind of
boring. Let's make it awesome!

 The landing pad will take up two sprites side by
side. Use the second slider in the middle to make
your drawing space 2x2 sprites. Make sure to draw
the pad flat across the top of the drawing space.
Don't forget to make it awesome!

function draw_ground()
 for i=0,127 do
 line(i,gnd[i],i,127,5)
 end
 spr(pad.sprite,pad.x,pad.y,2,1)
end

SAVE & RUN IT!

Slide
this!

42

lander ~ step 8

function _init()
 game_over=false
 win=false
 g=0.025
 make_player()
 make_ground()
end

function _update()
 if (not game_over) then
 move_player()
 end
end

It's important to keep track of whether or not our
game is over. For example, if the game is over, we
shouldn't be able to move the player.

But just keeping track of whether the game is over
isn't enough. When the game is over, we also need
to know whether the player won or lost.

We just need to track true or false for these two
pieces of information. And when the game starts,
the game is not over and the player hasn't won, so
these two things start out as false.

Now we need to check to see if the player
has landed on the ground or not. This is a bit
complicated because there a few ways the player
can land. They can:

•	land fully on the pad, but not going too fast
•	land fully on the pad, but going too fast
•	land partially or fully on the ground, not the pad

Only the first one means the player wins. We need

43

lander ~ step 8

SAVE & RUN IT!

function _update()
 if (not game_over) then
 move_player()
 check_land()
 end
end

function check_land()
 l_x=flr(p.x) --left side of ship
 r_x=flr(p.x+7) --right side of ship
 b_y=flr(p.y+7) --bottom of ship

 over_pad=l_x>=pad.x and r_x<=pad.x+pad.width
 on_pad=b_y>=pad.y-1
 slow=p.dy<1

 if (over_pad and on_pad and slow) then
 end_game(true)
 elseif (over_pad and on_pad) then
 end_game(false)
 else
 for i=l_x,r_x do
 if (gnd[i]<=b_y) end_game(false)
 end
 end
end

function end_game(won)
 game_over=true
 win=won
end

a function that will check each of these, one by
one. Whether they win or lose, we're going put the
changing of game_over and won in its own function.
It's always a good idea to put things you need to
do again and again into their own function.

You'll notice when we land, the game just... stops.
Let's make the end a bit more dramatic than that.

44

lander ~ step 9

We'll make the end of our game dramatic in two
steps. First we'll add sound, then we'll add visuals.

We need two sounds: one for winning and one for
losing. We'll use our end_game() function to play
these sounds.

In addition to the notes used, pay close attention
to the speed setting, the instrument used, and
volume levels.

SOUND #1 SOUND #2

function end_game(won)
 game_over=true
 win=won

 if (win) then
 sfx(1)
 else
 sfx(2)
 end
end

SAVE & RUN IT!

45

lander ~ step 10

function draw_player()
 spr(p.sprite,p.x,p.y)
 if (game_over and win) then
 spr(4,p.x,p.y-8) --flag
 elseif (game_over) then
 spr(5,p.x,p.y) --explosion
 end
end

Now let's add the visuals. If the player lands
successfully, we'll raise a flag of victory. But if the
player lands on the treacherous terrain or hits the
pad too hard, we'll show a fiery explosion.

We need to add sprites #4 and #5 for this.

We'll use the draw_player() function. We'll only
draw the sprites if game_over is true, but we'll
show different sprites whether win is true or not.

SAVE & RUN IT!

SPRITE #4 SPRITE #5

46

lander ~ step 11

We're almost done! One last step! We just need to
let the player know when the game is over and give
them a way to restart the game.

In _update(), we'll check to see if the game is
over, and if it is, we'll listen for a button press. If
the button is pressed, we'll run _init() which will
restart everything.

In _draw(), if the game is over, we'll tell the player
whether they won or not and how to play again.
(Use shift-X for the × symbol.)
function _update()
 if (not game_over) then
 move_player()
 check_land()
 else
 if (btnp(5)) _init()
 end
end

function _draw()
 cls()
 draw_stars()
 draw_ground()
 draw_player()

 if (game_over) then
 if (win) then
 print("you win!",48,48,11)
 else
 print("too bad!",48,48,8)
 end
 print("press × to play again",20,70,5)
 end
end

SAVE & RUN IT!

47

lander ~ etc

We're done! Even though we have a working game,
there's so much more we could add. For instance,
we could add wind, or obstacles, or a smaller pad,
or fuel that runs out. But, we'll stop here.

As with the first game,
we can publish it at
this point. The section
starting on page 58 has
easy instructions on
publishing your game.

As noted at the
beginning of this
tutorial, this game was
a bit more complex
than the first one. However, the basic approach
to creating the game is the same. We just build it
up one piece at a time, testing each time we add
something new.

48

pico-8 for gamedevs

While PICO-8 is certainly a fun environment for
new game developers who are first learning to
make games, it's just as fun for experienced game
developers who already know how to make games.

Because of PICO-8's
constraints, you are free
to quickly try stuff out
and just have fun, but
without the heavier time
investment required
of other game-making
environments. However,
experienced game

developers might not know how to get PICO-8
to do some of the more advanced things they're
used to doing in other environments (like particle
systems). To help with that, the following few
pages cover some more advanced topics that are
likely familiar to experienced game developers.

Even if you are not already an experienced game
developer, I urge you to work your way through
these next pages. You may need to read through
it a few times and play around with the examples
until you really understand them, but it will be
worth it.

49

more on tables

One reason tables are so
useful in games is the ability
for a table to store other
tables as values. Most games
use this quite a lot. For
example, each enemy in a
game might be stored as a
table, but a master enemies table would store each
of those individual enemy tables as values.

Tables of tables don't have to be as exciting as a
list of enemies. They can also be as simple as, say,
the terrain we created in the Lander tutorial, or the
cave walls in the Cave Diver tutorial. If you have to
keep track of a collection of things in your game, a
table of tables is probably your best bet.

There are many ways to deal with a table of tables.
We'll examine a common (and easy) method here.

Let's take the example of keeping track of enemies
in a game. As mentioned above, each enemy on its
own will be a table, but each enemy table will be
stored as a value in a master table called enemies.

There are really two parts to dealing with a table
of tables. First we need a few generic functions to
deal with each individual table value in the master
table. Then we'll need to loop through the master
table in _update() and _draw() and run those
generic functions on each individual table value.

50

more on tables

In our example, the master enemies table will be
created in _init(). Then we will need to create
make_enemy(), move_enemy(), and draw_enemy().
Lastly, we'll loop through the enemies table in both
_update() and _draw(). Let's get started.

The function make_enemy() needs to accept an
x/y coordinate so we can specify where to create
the enemy. The enemy table e is created as a local
(temporary) variable because we don't need each
enemy as its own variable after we add it to the
enemies table. For move_enemy(), we'll move them
randomly. If they move off-screen, we'll have them
"die" by removing them from the enemies table.

function _init()
 enemies={}
end

function make_enemy(x,y)
 local e={}
 e.x=x
 e.y=y
 e.sprite=1
 add(enemies,e)
end

function update_enemy(e)
 e.x+=rnd(2)-1
 e.y+=rnd(2)-1
 if (e.x<0 or e.x>119
 or e.y<0 or e.y>119) then
 del(enemies,e)
 end
end

function draw_enemy(e)
 spr(e.sprite,e.x,e.y)
end

51

more on tables

With those functions written, we need to add code
to loop through the enemies table. There are a few
methods. As an example, here are three ways of
looping through enemies to draw each enemy:
--method 1
foreach(enemies,draw_enemy)

--method 2
for i=1,#enemies do
 draw_enemy(enemies[i])
end

--method 3
for e in all(enemies) do
 draw_enemy(e)
end

Let's use method 1 in both _update() and _draw().
function _update()
 foreach(enemies,update_enemy)
end

function _draw()
 cls()
 foreach(enemies,draw_enemy)
end

Lastly, if we want to create, say, 20 enemies in
random locations at the start of the game, we'll
just add that to the _init() function.

function _init()
 enemies={}
 for i=1,20 do
 make_enemy(rnd(128),rnd(128))
 end
end

And that's it! This can be used for keeping track of
all sorts of things in your game. Try it out!

These are
just sample

code, not part of
the code for this

example!

52

particle systems

Particle systems are extremely useful in games.
They can be used for so many things: sparks, rain,
smoke, trails, debris, fireworks, you name it.

Particle systems are not hard to create. At their
core, they're just another table of tables. Also,
each particle usually has a lifetime and dies on its
own when its lifetime is over. The key to a good
particle system is having enough variables to give
you good control over each particle.

Let's create a particle fountain with enough
variables to give us good control over it. We'll use
many concepts from the section above on tables.
Feel free to examine each part to determine what
it does and tweak variables to see what they do.
You can also press Î to create a burst of particles.

function _init()
 ps={} --empty particle table
 g=0.1 --particle gravity
 max_vel=2 --max initial particle velocity
 min_time=2 --min/max time between particles
 max_time=5
 min_life=90 --particle lifetime
 max_life=120
 t=0 --ticker
 cols={1,1,1,13,13,12,12,7} --colors
 burst=50

 next_p=rndb(min_time,max_time)
end

function rndb(low,high)
 return flr(rnd(high-low+1)+low)
end

53

particle systems

function _update()
 t+=1
 if (t==next_p) then
 add_p(64,64)
 next_p=rndb(min_time,max_time)
 t=0
 end
 --burst
 if (btnp(Î)) then
 for i=1,burst do add_p(64,64) end
 end
 foreach(ps,update_p)
end

function _draw()
 cls()
 foreach(ps,draw_p)
end

function add_p(x,y)
 local p={}
 p.x,p.y=x,y
 p.dx=rnd(max_vel)-max_vel/2
 p.dy=rnd(max_vel)*-1
 p.life_start=rndb(min_life,max_life)
 p.life=p.life_start
 add(ps,p)
end

function update_p(p)
 if (p.life<=0) then
 del(ps,p) --kill old particles
 else
 p.dy+=g --add gravity
 if ((p.y+p.dy)>127) p.dy*=-0.8
 p.x+=p.dx --update position
 p.y+=p.dy
 p.life-=1 --die a little
 end
end

function draw_p(p)
 local pcol=flr(p.life/p.life_start*#cols+1)
 pset(p.x,p.y,cols[pcol])
end

54

game states

Games often have multiple modes, or states. For
example, a single game might have a menu state,
a gameplay state (where you actually play the
game), and a game over state. These states often
use very different code from each other. With
PICO-8's game loop, it's easy to separate the code
for your game's various states.

The root of how you do this lies in the ability for
function names to act like variables. Basically,
the value being stored in a function's name is the
function's code. Just like the value stored in a
variable x might be a number, the value stored in,
say, pset is the code to draw pixels on the screen.

Since PICO-8 will always run the game loop
functions _update() and _draw(), you can just
assign the code from other functions to the game
loop function names _update and _draw.

Lastly, it helps to put each game state in its own
code tab. This makes it easier to mentally separate
the functions for each state. For example, you
could put menu code in tab 0, gameplay code in
tab 1, game over code in tab 2, and various utility
functions in tab 3.

Let's look at an example of how this would work.
Notice that each state is on a different tab. Also
notice the way we move from one state to another
if the player hits Î. (Use shift-O for the Î symbol.)

55

game states - example

function _init() menu_init() end

function menu_init()
 _update=menu_update
 _draw=menu_draw
end

function menu_update()
 if (btnp(Î)) game_init() --play the game
end

function menu_draw()
 print("menu!") --menu draw code
end

function game_init()
 _update=game_update
 _draw=game_draw
end

function game_update()
 if (btnp(Î)) gameover_init() --game over
end

function game_draw()
 print ("game!") --game draw code
end

function gameover_init()
 _update=gameover_update
 _draw=gameover_draw
end

function gameover_update()
 if (btnp(Î)) menu_init() --back to menu
end

function gameover_draw()
 print("game over!") --game over code
end

56

coroutines

Most functions in your games need to happen
all at once inside the time it takes to draw one
frame (like moving the player). But sometimes you
need a single function to take longer than a single
frame. Or you might want other things to be able
to happen while the function is running its course.
This is where coroutines help.

Coroutines are special functions that can give back,
or yield, control to what’s calling them even if the
coroutine isn’t complete. The coroutine can then
be resumed at a later point.

This is very useful for, say, scripted animation or
showing dialog one letter at a time, all the while
still listening for key presses from the player. In
both examples, you would want the function to
play out over time, not happen all at once.

PICO-8 has four functions to work with coroutines:

cocreate(function_name) - Creates and returns a
coroutine, but does not start the coroutine.

coresume(coroutine) - Passes control to the
coroutine. (If it hasn't started yet, this will start it.)

costatus(coroutine) - Returns the status of the
coroutine as "running", "suspended", or "dead".

yield() - Gives control back to whatever called the
coroutine.

57

coroutines - example

This will make a circle move in a pattern around the
screen. Any button will reset the animation.

function _init()
 c_move=cocreate(move)
end

function _update()
 if c_move and costatus(c_move)!="dead" then
 coresume(c_move)
 else
 c_move=nil
 end
 if (btnp()>0) c_move=cocreate(move)
end

function _draw()
 cls(1)
 circ(x,y,r,12)
 print(current,4,4,7)
end

function move()
 x,y,r=32,32,8

 current="left to right"
 for i=32,96 do
 x=i
 yield()
 end

 current="top to bottom"
 for j=32,96 do --top to bottom
 y=j
 yield()
 end

 current="back to start"
 for i=96,32,-1 do --back to start
 x,y=i,i
 yield()
 end
end

Try it
out! Type this code into PICO-8 and
run it!

58

publishing your games

Publishing your game is easy, but there are a few
steps you will need to do to get your game ready.
The first step is a title for your game. Just add two
comments to the top of your code. These will be
added to the cart image as the game's title.

The next step is creating the cart's label image.
Play your game, and when the screen looks how
you want it to look, hit F7. Then make sure to save!

For the last step, hit ESC to go to Command Mode
and type save yourgame.png to save as a shareable
image. Now it's ready to be shared!

59

publishing to the bbs

The Lexaloffle forum is a great place to publish
your PICO-8 games. It's referred to as "the BBS"
by the PICO-8 community, after the bulletin board
systems of the '80s and '90s. There you'll find a
wonderful, welcoming community of creators.

To submit your cart to the BBS, go to this address:

http://lexaloffle.com/pico-8.php?page=submit

After choosing Post a Cartridge, you'll come to a
page where you can submit your cartridge. When
asked for which file to upload, choose the cart
image you made (the yourgame.p8.png file).

http://lexaloffle.com/pico-8.php?page=submit

60

exporting for the web

Once you have your cart image ready, you can
publish your game as an HTML5 game. This lets
you load and play the game in a web page, on its
own, without the need to have PICO-8 installed.

Once your game is loaded in PICO-8, hit ESC to go
to Command Mode, if you're not already there.
Type the command export yourgame.html to
export your game. After it creates yourgame.js
and yourgame.html, follow the instructions and
type folder to see the files that were created.

Go ahead and open the HTML file in your browser
to test it out. Everything should work just fine.

The HTML file is just a template to nicely embed
the Javascript file, so feel free to edit the HTML
file to make it look how you want. However, if you
upload the game to the web, make sure you don't
forget to upload the Javascript file as well.

61

publishing on itch.io

The web site itch.io is a publishing platform for
independent game developers. It's probably one of
the most developer-friendly publishing platforms
around. Literally within minutes of exporting your
PICO-8 game, you can have your game published
on itch.io for all to see and play.

The first step is to follow the instructions on page
58 for prepping your game. The next steps are
almost the same as exporting to the web, but the
differences are important.

Follow the instructions for exporting to the web,
but when you type the export command, type
export index.html instead of your game's name.
It's very important you use index.html in this step!

The next step is to zip the two files, index.html
and index.js, into one zip file. (You can name the
zip file whatever you want.) On Windows, select
the two files, right click on them, and then choose
"Send to compressed (zipped) folder". On macOS,
select the two files, right click on them, and then
choose "Compress 2 Items".

62

publishing on itch.io

All the remaining steps take place on the itch.io
web site. Obviously the first step is to create an
account!

Once your account is created, click the little drop-
down arrow next to your profile icon in the top-
right and choose "Upload new project" from the
list. You'll be taken to the new project creation
page. Most of the steps are self-explanatory, but
we'll walk through the parts that need particular
attention.

While you are playing your game,
you can take a screenshot with
the F6 key. These make good cover images!

Make sure to set the "Kind of
project" to HTML. This means
the game will be playable in

the browser, without having to download anything.

The file you need to upload is the zip
file you made on the previous page.
Because PICO-8 games are so small, it should only
take a short amount of time to upload your zip file.
Nevertheless, make sure the file finishes uploading
fully! This is important.

63

publishing on itch.io

Once your file is done
uploading, that section
will change to give you
new options. In that
section, check the box
that says "This file will be played in the browser."

Since PICO-8 games use
a square screen, set both

viewport dimension settings to 640 pixels.

As mentioned before, the rest of the settings are
fairly self-explanatory, so take some time to go
through them and change them as you see fit. For
instance, you may want to add the "pico-8" tag in
the Tags section to make it easier for other PICO-8
users to find your game.

When you're done, click the
"Save & view page" button at the
bottom of the page. This will take you to a preview
of what others will see when they view your game.

If all is well, click the button at the top
of the preview page. This will take you back to the

bottom of the project page.
Change the option from Draft
to Public and click Save.

Done! You're now a published
game developer! Huzzah!

64

code reference

On the following pages you'll find a short summary
of the more common functions built into PICO-8.
They are loosely organized by category. For a list
and descriptions of all functions, check the manual
file called pico-8.txt in PICO-8's install folder.

Green brackets [like this] mean the information
is optional and the function will still run without it.

Graphics
cls([c]) - Clear the screen to black, or to color c
pset(x,y,[c]) - Set the pixel at x,y to color c
pget(x,y) - Returns the color at x,y
line(x1,y1,x2,y2,[c]) - Draw a line from x1,y1 to

x2,y2 with color c
circ(x,y,r,[c]) - Draw a circle at x,y of radius r

with color c
circfill(x,y,r,[c]) - Draw a filled circle at x,y of

radius r with color c
rect(x1,y1,x2,y2,[c]) - Draw a rectangle from

x1,y1 to x2,y2 with color c
rectfill(x1,y1,x2,y2,[c]) - Draw a rectangle

from x1,y1 to x2,y2 with color c
spr(s,x,y,[w,h],[flip_x,flip_y]) - Draw sprite

s at x,y, optionally w,h sprites wide and tall, and
optionally flipped horizontally or vertically if
flip_x or flip_y are true

color(c) - Set the default color to c for functions
that use a color

65

code reference

cursor(x,y) - Set the print() function's cursor
position to x,y

print(t,[x,y],[c]) - Print value t at x,y using
color c

Tables
add(t,v) - Add value v to table t and return v
del(t,v) - Delete value v from table t
all(t) - Used in for loops to go through every

item in table t, as long as t is using number-
based keys. Example:

foreach(t,f) - Go through every value in table t
and run function f with each value as a single
parameter for the function f

pairs(t) - Used in for loops to go through every
item in table t and provide the key and value of
each item. Example:

Input
btn(b,[p]) - Return the state of button b (0-5), for

player p (0-7), as true or false
btnp(b,[p]) - Return true or false depending on

whether button b (0-5), for player p (0-7), was
newly pressed or not

for i in all(t) do
 print(i)
end

for k,v in pairs(t) do
 print("key:"..k)
 print("value:"..v)
end

66

code reference

Audio
sfx(n,[c],[o],[l])

Play sound number n on channel c starting at
note o and continuing for l notes

music(n,[fade],[chan])
Play music starting at track n, fading in over
fade milliseconds, reserving the channels
defined by the chan bitmask for music

Map
mget(x,y) - Return the number of the sprite at

map location x,y
mset(x,y,[s]) - Set the sprite at map location x,y

to use sprite number s
map(mx,my,sx,sy,w,h,[l]) - Draw map tiles,

starting with map tile mx,my, to screen
coordinate sx,sy, and draw w tiles wide and h
tiles tall, and if l is specified, draw only the cells
that have sprites with matching bits on

Math
max(x,y) - Return the max of the values x and y
min(x,y) - Return the min of the values x and y
mid(x,y,z) - Return the middle value of x, y, and z,

no matter the order. For example, mid(6,2,9)
returns 6

flr(x) - Return the closest integer below x. So
flr(4.6) returns 4 and flr(-4.6) returns -5.

cos(x) - Return the cosine of x, where the start of

67

code reference

a circle is 0.0 and a full circle is 1.0
sin(x) - Return the inverse sine of x (because

positive y is down in PICO-8's screen coordinate
system), and like cosine, the start of a circle is
0.0 and a full circle is 1.0

atan2(dx,dy) - Convert dx,dy into an angle
from 0.0 to 1.0 that represents the direction
pointing from 0,0 to dx,dy

sqrt(x) - Return the square root of x
abs(x) - Return the absolute value of x
rnd([x]) - Return a random number between 0.0

and x, or between 0.0 and 1.0 if x is not given
srand(x) - Initialize the random number generator

using x to get predictable random numbers
time() - Return the seconds since PICO-8 started
tonum(s) - Return the string s as a number

Strings
#s - Return the number of characters in string s
s1..s2 - Join string s1 to string s2
sub(s,b,[e]) - Get a sub-section of string s,

starting at character b, until the end of the
string, or for e number of characters

tostr(n) - Return the number n as a string

Colors
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

68

music reference

In the top-left of PICO-8's
Sound Editor, you can switch
to tracker mode. In this mode,
you can type in specific notes
using your computer keyboard
like a piano.

On the piano below, you can
see which keyboard keys (in black and white)
correspond to which musical notes (in blue).

69

more pico-8 resources

There are many resources on the Web for you to
learn more about PICO-8. I'm going to list just a
few of them here.

Offical Lexaloffle PICO-8 Site
www.pico-8.com

The PICO-8 BBS
www.lexaloffle.com/bbs/?cat=7

Unofficial PICO-8 Wiki
pico-8.wikia.com/wiki/Pico-8_Wikia

PICO-8 Fanzines by Arnaud De Bock
sectordub.itch.io/pico-8-fanzine-1
sectordub.itch.io/pico-8-fanzine-2
sectordub.itch.io/pico-8-fanzine-3
sectordub.itch.io/pico-8-fanzine-4

PICO-8 Cheatsheet by Carlos Aguilar
neko250.github.io/pico8-api

Awesome PICO-8 - Curated List by Felipe Bueno
github.com/felipebueno/awesome-PICO-8

PICO-8 Resources by Marco Secchi
pico-8-resources.zeef.com/marco.secchi

http://www.pico-8.com
http://www.lexaloffle.com/bbs/?cat=7
http://pico-8.wikia.com/wiki/Pico-8_Wikia
http://sectordub.itch.io/pico-8-fanzine-1
http://sectordub.itch.io/pico-8-fanzine-2
http://sectordub.itch.io/pico-8-fanzine-3
http://sectordub.itch.io/pico-8-fanzine-4
http://neko250.github.io/pico8-api
http://github.com/felipebueno/awesome-PICO-8
http://pico-8-resources.zeef.com/marco.secchi

70

pico-8 font reference

Until you’re used to the font in PICO-8, sometimes
it can be hard to tell which character is which. This
handy chart should help you out.

a a À A ` ` ~ ~
b b Á B 1 1 ! !
c c Â C 2 2 @ @
d d Ã D 3 3 # #
e e Ä E 4 4 $ $
f f Å F 5 5 % %
g g Æ G 6 6 ^ ^
h h Ç H 7 7 & &
i i È I 8 8 * *
j j É J 9 9 ((
k k Ê K 0 0))
l l Ë L - - _ _
m m Ì M = = + +
n n Í N [[{ {
o o Î O]] } }
p p Ï P \ \ | |
q q Ð Q ; ; : :
r r Ñ R ' ' " "
s s Ò S , , < <
t t Ó T . . > >
u u Ô U / / ? ?
v v Õ V
w w Ö W
x x × X
y y Ø Y
z z Ù Z

71

pico-8 community creations
(@:twitter Ï:bbs)

@enargy @castpixel @johanpeitz
@pixel_cod @musurca @guerragames
@trasevol_dog @platformalist @morningtoast
jcwilkÏ electricgryphonÏ ultrabriteÏ

https://twitter.com/enargy
https://twitter.com/castpixel
https://twitter.com/johanpeitz
https://twitter.com/pixel_cod
https://twitter.com/musurca
https://twitter.com/guerragames
https://twitter.com/trasevol_dog
https://twitter.com/platformalist
https://twitter.com/morningtoast
https://www.lexaloffle.com/bbs/?uid=10873&mode=carts
https://www.lexaloffle.com/bbs/?uid=10844&mode=carts
https://www.lexaloffle.com/bbs/?uid=13845&mode=carts

72

The Portland Indie Game Squad is a non-profit dedicated to supporting the
health and continued expansion of game developers in Portland, the Pacific
Northwest, and online. They provide events, resources, and networking
activities for art and technology creatives.

A huge thanks goes to PIGSquad for the creation of this zine. It would not
have been possible to create without their help and support. If you'd like to
find out more, visit pigsquad.com and see what they are all about. Consider
donating at patreon.com/pigsquad to support this wonderful group.

@lexaloffle

http://pigsquad.com
http://patreon.com/pigsquad
https://twitter.com/lexaloffle

